WS 14/15 08.12.2014 Zettel 7

Übungen zur Linearen Algebra 1

Aufgabe 25:

- (a) Es sei $V = \mathbb{R}^5$ aufgefaßt als \mathbb{R} -Vektorraum, U = span((1,1,0,0,0),(1,2,0,0,0)),W = span((0,1,2,0,0),(0,0,0,1,0),(0,0,0,0,1),(0,0,1,1,0)). Bestimme $\dim_{\mathbb{R}}(U \cap W)$.
- (b) Es sei $V = \mathbb{R}[X]$ aufgefaßt als \mathbb{R} -Vektorraum, $U = \{\sum_{i=0}^{6} a_i X^i \in V : \forall i \in \mathbb{N} a_{2i-1} = 0\}$ und $W = \{\sum_{i=0}^{6} a_i X^i \in V : \forall i \in \mathbb{N} a_{3i-1} = 0 \land a_{3i-2} = 0\}$. Bestimme $\dim_{\mathbb{R}}(U + W)$.
- (c) Es sei V ein n-dimensionaler K-Vektorraum, W und U Untervektorräume von V mit $\dim(U) + \dim(W) = n$ und $U \cap W = \{0\}$. Zeige: U + W = V

Aufgabe 26:

- (a) Es sei K ein beliebiger Körper, $n \in \mathbb{N}$, $A, B \in K^{n \times n}$. Zeige: $(AB)^t = B^t A^t$.
- (b) Bestimme alle $A \in \mathbb{R}^{2\times 2}$, die mit allen anderen reellen 2×2 -Matrizen kommutieren, d.h. so, dass AB = BA für alle $B \in \mathbb{R}^{2\times 2}$.

Zusatzaufgabe für Interessierte:

- (a) Es seien $a, n \in \mathbb{N}$. Zeige: $V_{a,n} := \{ \sum_{i=0}^{n-1} q_i \sqrt[n]{a^i} : q_0, ..., q_{n-1} \in \mathbb{Q} \}$ ist Untervektorraum des \mathbb{Q} -Vektorraumes \mathbb{R} mit $\dim(V_{a,n}) \leq n$.
- (b) Finde ein Beispiel für $a, n \in \mathbb{N}$ mit $\dim_{\mathbb{Q}}(V_{a,n}) = n$ und ein Beispiel für $a, n \in \mathbb{N}$ mit $\dim_{\mathbb{Q}}(V_{a,n}) < n$.
- (c) Zeige: Es existiert ein Polynom $q \in \mathbb{Q}[X]$ mit $q \neq 0$ so, dass $q(\sqrt[3]{2} + 5\sqrt[3]{4} + 7) = 0$.

Bei jeder Aufgabe sind bis zu 10 Punkte zu erreichen.

Abgabe bis zum 15.12.2014, 9.55. Bitte werfen Sie Ihre Bearbeitungen in das Postfach Ihres Tutors im Gang F, 4. Etage.