Übungsblatt 2 zur Linearen Algebra II

Aufgabe 1: Sei K ein Körper, $a, b \in K$ und f ein lineares Funktional auf K^2 gegeben durch $f(x_1, x_2) = ax_1 + bx_2$. Zu jedem der folgenden linearen Operatoren T sei $g = T^t f$. Bestimme $g(x_1, x_2)$.

- a) $T(x_1, x_2) = (x_1, 0)$
- b) $T(x_1, x_2) = (-x_2, x_1)$
- c) $T(x_1, x_2) = (x_1 x_2, x_1 + x_2).$

Aufgabe 2: Es sei K ein Körper.

- (a) Es sei V = K[X], $T : V \to V$ ordne jedem $p \in V$ seine Ableitung p' zu. Ferner sei $g : V \to K$ gegeben durch g(p) = p(0). Bestimme $T^t(g)(4x^2 + 3x + 5)$.
- (b) Für $n \in \mathbb{N}$, $V = K^{n \times n}$, $M \in V$ sei $\operatorname{tr}(M) = \sum_{i=1}^{n} M_{ii}$. Ferner bilde $T : V \to V$ die Matrix $A = (a_{ij})_{1 \le i,j \le n}$ ab auf die Matrix $T(A) = (a_{ji})_{1 \le i,j \le n}$. Zeige: Für alle M ist $T^{t}(\operatorname{tr})(M) = \operatorname{tr}(M)$.
- (c) Es sei F die Menge der unendlich oft differenzierbaren Funktionen $f: \mathbb{R} \to \mathbb{R}$ mit $f(0) = 0, T: F \to F$ gegeben durch T(f) = f', ferner $g: F \to \mathbb{R}$ gegeben durch $g(f) = \int_0^1 f(x) dx$. Bestimme $T^t(g)(f)$.

Aufgabe 3:

- (a) Sei $\mathfrak{B} := ((1,0,1),(-1,-1,-1),(3,3,0)) \subseteq \mathbb{R}^3$. Zeige, dass \mathfrak{B} eine Basis von \mathbb{R}^3 ist und bestimme die Dualbasis \mathfrak{B}^* zu \mathfrak{B} .
- (b) Es seien $f_1, f_2, f_3 : \mathbb{R}^3 \to \mathbb{R}$ gegeben durch:

 $f_1(x_1, x_2, x_3) = x_1 + 2x_2, f_2(x_1, x_2, x_3) = x_1 + x_2 + x_3, f_2(x_1, x_2, x_3) = 2x_1 + x_2.$ Zeige: $\mathbb{B} := (f_1, f_2, f_3)$ ist eine Basis von $(\mathbb{R}^3)^*$.

(c) Finde eine Basis \mathfrak{B} von \mathbb{R}^3 so, dass $\mathfrak{B}^* = \mathbb{B}$ (mit \mathbb{B} wie in (b)).

Aufgabe 4: Es sei S eine Menge, K ein Körper; ferner bezeichne V(S;K) den K-Vektorraum der Funktionen $f: S \to K$ mit (cf+g)(x) = cf(x) + g(x) für alle $f, g \in V(S;K)$, $c \in K$, $x \in S$. Sei nun $n \in \mathbb{N}$ und W ein n-dimensionaler Unterraum von V(S;F). Zeige: Es existieren $x_1,...,x_n \in S$, $f_1,...,f_n \in W$ mit $f_i(x_j) = \delta_{ij}$ für alle $i,j \in \{1,2...,n\}$.

Zusatzaufgabe für Interessierte: Es sei K ein Körper, $n \in \mathbb{N}$ so, dass $\operatorname{char}(K)$ kein Teiler von n ist. Zeige: Sind $A, B \in K^{n \times n}$, so ist $AB - BA \neq I_n$.

Zeige weiter: Ist n gerade und $\operatorname{char}(K) = 2$, so existieren $A, B \in K^{n \times n}$ mit $AB - BA = I_n$.

Bei jeder Aufgabe sind bis zu 10 Punkte zu erreichen. Abgabe bis Montag, den 12. Mai 2014, um 10:00 Uhr in das Postfach Deines Tutors in der 4. Etage des F-Gebäudes.