Übungsblatt 5 zur Linearen Algebra II

Aufgabe 1: Es sei $K = \mathbb{R}$ oder $K = \mathbb{C}$, V ein endlich-dimensionaler K-Vektorraum mit innerem Produkt (|).

- (a) Zeige: Ist $U: V \to V$ Isometrie, \mathbb{B} eine orthonormale Basis von V, so ist $[U]_{\mathbb{B}}$ unitär (falls $K = \mathbb{C}$) bzw. orthogonal (falls $K = \mathbb{R}$).
- (b) Es sei \mathbb{B} Orthonormalbasis von V, \mathbb{B}' eine beliebige Basis von V. Zeige: \mathbb{B}' ist orthonormal genau dann, wenn die Matrix des Basiswechsels von \mathbb{B} nach \mathbb{B}' unitär ist.

Aufgabe 2: Es sei V ein endlich-dimensionaler \mathbb{C} -Vektorraum mit innerem Produkt (|), $X \in \mathcal{L}(V, V)$ ein linearer Operator.

- (a) Zeige: X ist hermitesch gdw. es existiert eine Orthonormalbasis \mathbb{B} von V so, dass die Matrix $D = [X]_{\mathbb{B}}$ hermitesch ist gdw. die Matrix $[X]_{\mathbb{B}}$ für jede Orthonormalbasis \mathbb{B} von V hermitesch ist.
- (b) Zeige: Es existiert eine Orthonormalbasis \mathbb{B} von V so, dass $[X]_{\mathbb{B}}$ unitär gdw. X ist unitär gdw. $[X]_{\mathbb{B}}$ ist unitär für jede Orthonormalbasis \mathbb{B} .

$$\textbf{Aufgabe 3: Es sei } A = \begin{pmatrix} 3 & -1 & 1 & -1 \\ 1 & 1 & 1 & 3 \\ 1 & -1 & 3 & -1 \\ 1 & 3 & 1 & 1 \end{pmatrix}. \text{ Finde eine unitäre Matrix } P \text{ sowie } \\ a,b,c,d \in \mathbb{R} \text{ so, dass } PAP^{-1} = \begin{pmatrix} a & -b & 0 & 0 \\ b & a & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix}.$$

Aufgabe 4: Zeige: Ist A eine unitäre Matrix, so ist $|\det(A)| = 1$.

Zusatzaufgabe für Interessierte: Es sei A eine hermitesche $n \times n$ -Matrix mit $x^T A x \in \mathbb{R}^{\geq 0}$ für alle $x \in \mathbb{C}^n$. Zeige: Es existiert eine hermitesche $n \times n$ -Matrix B mit $x^T B x \geq 0$ für alle $x \in \mathbb{C}^n$ und $B^2 = A$.

Bei jeder Aufgabe sind bis zu 10 Punkte zu erreichen. Abgabe bis Montag, den 02. Juni 2014, um 10:00 Uhr in das Postfach Deines Tutors in der 4. Etage des F-Gebäudes.