Übungen zur Mathematischen Logik

Aufgabe 1: Führen Sie die folgenden Substitutionen aus:

- (a) $[ffxyzgxz] \frac{z \cdot x \cdot y}{x \cdot y \cdot z}$ (f dreistelliges, g einstelliges Funktionszeichen) (b) $[((Pxy \lor Qz) \land \neg Qfxgy)] \frac{fzz \cdot ggx \cdot z}{x \cdot y \cdot z}$ (P zweistelliges, Q einstelliges Relationszeichen, f zweistelliges, g einstelliges Funktionszeichen)

- (c) $[\exists x \exists y (Pxu \lor Pyv)] \frac{u u u}{x y v}$ (P zweistelliges Relationszeichen) (d) $[\exists x \exists y (Pxu \lor Pyv)] \frac{v fxy}{u v}$ (P zweistelliges Relationszeichen) (e) $[(\forall x \exists y (Pxy \land Pxu) \lor \exists u fuu \equiv x)] \frac{x fxy}{x u}$ (P zweistelliges Relationszeichen, f zweistelliges Funktionzeichen)

Aufgabe 2: Es sei $S_V := (K, V, +_K, \cdot_K, \cdot_s, +_V, 0_K, 1_K, 0_V)$ die Sprache der Vektorräume. Um einen Vektorraum W durch S_V zu beschreiben, fassen wir ihn auf als definiert über einer Trägermenge X, die die Vereinigung des Skalarkörpers mit der Menge der Vektoren ist. K und V sind dann einstellige Relationszeichen, die wir als Zugehörigkeit eines Elements von Xzum Skalarkörper bzw. zur Menge der Vektoren interpretieren, entsprechend sind $0_K, 1_K, 0_V$ Konstantenzeichen, deren intendierte Interpretationen das neutrale Element der Addition und der Multiplikation des Skalarkörpers sowie das neutrale Element der Addition der Gruppe der Vektoren sind und $+_K, \cdot_K, \cdot_s, +_V$ zweistellige Funktionszeichen zur Darstellung der Addition und Multiplikation im Skalarkörper, der Skalarmultiplikation sowie der Vektoraddition.

- (a) Schreiben Sie die Menge Φ der Vektorraumaxiome in S_V auf. Es sei nun $M \models \Phi$. Formulieren Sie folgende Aussagen in S_V :
- (b) Es existiert eine Basis mit genau 3 Elementen.
- (c) Der Schnitt zweier zweidimensionaler Unterräume, die nicht identisch sind, ist ein- oder nulldimensional.

Zusatzaufgabe für Interessierte: Ist $\mathfrak A$ eine S-Struktur mit Trägermenge A und $\pi:\mathfrak A\to\mathfrak A$ ein Isomorphismus, so heißt π **Automorphismus** von $\mathfrak A$. Eine Teilmenge $X\subseteq A$ heißt 'definierbar in $\mathfrak A$ ', falls ein S-Ausdruck $\phi(v_0)$ mit einer freien Variablen v_0 so existiert, dass $\mathfrak A\models\phi[a]\leftrightarrow a\in X$ für alle $a\in A$.

- (a) Zeigen Sie: In (\mathbb{Z}, \cdot) ist \mathbb{P} , die Menge der Primzahlen, definierbar.
- (b) Zeigen Sie: Ist $X \subseteq A$ und existiert ein Automorphismus π von $\mathfrak A$ mit $\{\pi(x): x \in X\} \neq X$, so ist X in $\mathfrak A$ nicht definierbar.
- (c) Zeigen Sie: In $(\mathbb{Z},+)$ ist \mathbb{N} nicht definierbar.
- (d) Zeigen Sie: In (\mathbb{Z}, \cdot) ist $5\mathbb{Z}$ nicht definierbar.

Bei jeder Aufgabe sind bis zu 10 Punkte zu erreichen. Abgabe am 20.05.2015 in der Vorlesung oder vor der Vorlesung in den Briefkasten Ihres Übungsleiters.