

Fachbereich Mathematik und Statistik der Universität Konstanz Dr. Merlin Carl WS 2012/2013 10.01.2013 Zettel 10

Übungen zur Axiomatischen Mengenlehre 2

Aufgabe 1: Es seien M ein Grundmodell, (P, \leq) ein Forcing in $M, p \in P$, $\phi(v_0, ..., v_n)$ eine LAST-Formel und $\dot{x}_0, ..., \dot{x}_n \in M$. Folgt dann, dass

$$p \Vdash \phi(\dot{x}_0, ..., \dot{x}_n) \lor p \Vdash \neg \phi(\dot{x}_0, ..., \dot{x}_n)?$$

Aufgabe 2: Es sei $\phi(v_0, ..., v_n)$ eine LAST-Formel, die das Forcing-Theorem erfüllt. Zeigen Sie:

$$p \Vdash \forall v_0 \phi(v_0, \dot{x}_1, ..., \dot{x}_n) \text{ gdw. } \forall \dot{x}_0 \in Mp \Vdash \phi(\dot{x}_0, ..., \dot{x}_n).$$

Zusatzaufgabe für Interessierte: Ein Forcing (P, \leq) heiße ω -abgeschlossen, falls zu jeder Menge $\{p_i | i \in \omega\}$ von paarweise kompatiblen Elementen von P ein $q \in P$ existiert mit $q \leq p_i$ für alle $i \in \omega$.

Es seien nun M ein Grundmodell, $(P, \leq) \in M$ ein ω -abgeschlossenes Forcing und G ein M-generischer Filter auf P.

Zeigen Sie: Ist $a \subseteq M$ und $a \in M[G]$, so ist sogar $a \in M$.

Hinweis: In dieser Aufgabe darf das Forcing-Theorem bereits vorausgesetzt werden.

Bei jeder Aufgabe sind bis zu 10 Punkte zu erreichen.

Abgabe am 16.01.2013 in der Vorlesungspause oder per Mail als PDF an merlin.carl@uni-konstanz.de.