

Fachbereich Mathematik und Statistik der Universität Konstanz Dr. Merlin Carl WS 2012/2013 19.12.2012 Zettel 9

Übungen zur Axiomatischen Mengenlehre 2

Aufgabe 1: Sei M ein Grundmodell (also ein abzählbares transitives Modell von ZFC), seien $\mathbb{P} := (P, \leq, 1) \in M$ und $\mathbb{P}' := (P', \leq', 1') \in M$ Forcings und sei $f : \mathbb{P} \to \mathbb{P}'$ ein (Ordnungs-)Isomorphismus. Zeigen Sie:

- (1) $G \subseteq P$ ist genau dann M-generischer Filter auf P, wenn f[G] generischer Filter auf P' ist.
- (2) Ist G ein M-generischer Filter auf P, so ist $M[G] \simeq_{\in} M[f[G]]$.

Aufgabe 2: Ein Element p eines Forcings $\mathbb{P}:=(P,\leq,1)$ heißt Atom von \mathbb{P} falls $\neg \exists q,r \leq p(q \bot r)$. Enthält \mathbb{P} keine Atome, so heißt \mathbb{P} verzweigt. Es sei nun M ein Grundmodell mit $\mathbb{P} \in M$. Zeigen Sie:

- a) Ist p ein Atom von \mathbb{P} , so existiert ein generischer Filter $G \in M$ auf \mathbb{P} mit $p \in G$.
- b) Ist \mathbb{P} verzweigt, so existiert kein M-generischer Filter G auf \mathbb{P} mit $G \in M$. (Insbesondere ist dann also $M \subsetneq M[G]$, d.h. die generische Erweiterung ist eine echte Erweiterung.)

(Tipp zu b): Argumentieren Sie durch Widerspruch und zeigen Sie zunächst, dass für einen M-generischen Filter G die Menge P-G dicht in \mathbb{P} ist.)

Zusatzaufgabe für Interessierte: Eine binäre mengentheoretische Operation F heiße Forcing-verträglich, falls für alle Grundmodelle M, alle Forcings $\mathbb{P} \in M$ und alle M-generischen Filter auf \mathbb{P} gilt:

$$\forall \dot{x},\dot{y} \in M(F(\dot{x}^G,\dot{y}^G) = F(\dot{x},\dot{y})^G)$$

Welche der folgenden Operationen sind Forcing-verträglich? Beweisen Sie Ihre Antworten!

- a) $F(x,y) = x \cup y$
- b) $F(x,y) = x \cap y$
- c) F(x, y) = x y

Bei jeder Aufgabe sind bis zu 10 Punkte zu erreichen. Abgabe am 09.01.2013 in der Vorlesungspause oder per Mail als PDF an merlin.carl@uni-konstanz.de.