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Abstract

We consider generalized wave equations for the p—Laplacian and prove
the local in time existence of solutions to the Cauchy problem. We give an
estimate of the life-span of the solution, and show by a generic counter-
example that global in time solutions can not be expected.

1 Introduction
This paper is devoted to strong solutions to the hyperbolic Cauchy problem

wie(t, ) — (|we(t, )P 2we (t, ), = 0, (1.1)
w(0,z) = ®(z), we(0,z) = T(x),

where p is a positive real number, not necessarily an even integer. More generally,
we shall study

wy(t, ) — a(wg(t, ©))we (t, ) =0, (1.2)
w(0,z) = ®(z), we(0,z) = T(x),

where a = a(s): [-M, M] — R is a function with the following properties.

Condition 1. For all s € [-M, M| = By, the following holds:

a(s) >0, a(s)=0<=s=0, (1.3)
a(s) = s2ag(s), ag(s) < Cy, (1.4)
0 < sag(s) < Cuap(s), 0 < sd(s) < Cuals). (1.5)

Additionally, ag is even and ag, a1 € CF(Byy), where a;(s) = a’(s)/s, and P € N.
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2 1 INTRODUCTION

Remark 1.1. The choice a(s) = (p — 1)|s[P~2 leads to (1.1) with p > P + 4, or
p € 2N, p > 4, and P € N is arbitrary.

The first of our main results is the following.
Theorem 1.2. Assume that the function a = a(s) satisfies Condition 1, and
suppose that the initial data ®, ¥ € CgH(R) with4 <k < P+1, PkeN, are

compatible to a(s), i.e., they are real-valued and ||Py || < M.
Then the Cauchy problem (1.2) has a real-valued local solution w with

w e LOO([OvTOLHk(R))v at2w € Loo([O’TO]aHkiz(R))'

This solution vanishes outside [0, Tp] X supp(®, ¥). The estimate Ty of the life span
only depends on M, supp(®, V), and the norms |[(®, V)| co(ry [[(a0, a1)llcap,,)-
The solution is unique in the space of all functions w with w € L=([0, Ty], H*(R)),
Ofw € L([0, T, H*(R)).

Remark 1.3. By the same arguments, we can study the more general equation

Wy — a(We )Wee — b(w,) — cw =0,

where a(s) is as above, b(s) is sufficiently smooth with b(0) = 0 and |V/(s)|?> <
Ca(s), and cis a real constant. It is even possible to allow an additional dependence
on time of a, b, c. However, for simplicity, we stick to (1.2).

In the proof, we shall replace the nonsmooth coefficient a(s) by a smooth
approximation, preserving the other conditions.

Condition 2. The coefficient a = a(s) satisfies Condition 1, and ag € C°°(Byy).

Theorem 1.4. Let the assumptions of Theorem 1.2 be satisfied. Additionally,
suppose that a = a(s) satisfies Condition 2, and ®, ¥ € C5°(R).
Then the solution w to the Cauchy problem (1.2) belongs to C;°([0,Tp] X R).

The life span of the solution tends to infinity for initial data approaching zero,
in the following sense. Fix some 0 < A < 1, and consider the Cauchy problem

Wi (t, ) — a(wy (¢, ))wee (t, ) =0, (1.6)
w(0,z) = A®(z), w(0,2) = AT(z).

Theorem 1.5. Let the assumptions of Theorem 1.2 be satisfied. Then the lower
estimate of the life span Ty = To(A\) goes to infinity for X — 0. More precisely,

To(A\) > Clln Y3, 0< A< 1.

It is known (see [5]) that (1.2) admits a unique local solution in Sobolev
spaces in the strictly hyperbolic case, (a(s) > « > 0). However, this solution is
never a global classical solution, except in trivial cases. In [11], the Cauchy problem

wie (t, 1) — a(wy (t, )2 wep(t,2) =0, w(0,2) = ®(x), w(0,2) = V(x)



has been considered, where a(w;) > 0, a’(w;) # 0, and the data @, ¥ have compact
support. It was shown that the only global solution w € C?(R; x R,) is w = 0.
In other words, every nontrivial solution develops a singularity in finite time, it is
the second derivatives of w that become infinite. This result can not be applied to
(1.2) since (1.2) is neither strictly hyperbolic nor everywhere genuinely nonlinear.
However, by a different method, we show in Section 9 that global solutions to (1.1)
can not exist in case of p = 4 provided that the initial data satisfy appropriate
sign conditions.

At first glance, it seems natural to attack (1.2) by a linearisation argument,
leading to a family of Cauchy problems

wip ™ (¢, x) — a(w( (t, 2))wl D (¢, x) = 0,

w0, 2) = B(@),  w™(0,2) = U(x),

and then one hopes to be able to show convergence w™ — w* at least for small
times. In general, this direct approach will not work in the weakly hyperbolic case.
In fact, a Cauchy problem

wi(t, ) — a(t)wer(t,2) =0, a >0, acC™,
w(0,z) = (z), w(0,2)=¥(z), P,¥eC

without solution was constructed in [3]. On the other hand, (1.2) is well-posed in

Gevrey spaces with Gevrey index between 1 and 2 if @ = a(s) is analytic. This

is a special case of much more general results in [12], [13]. If one allows damping

terms of the form (—A)*0,w in (1.2), 0 < a < 1, then the global existence and

the energy decay of weak solutions can be proved, see for instance [1], [2], [7], [9].
In [6], the Cauchy problem

Wit — V(|Vw|p_2Vw) - |w|q_1w = 07 p,q> 1a q > p—= 1a
w(0,z) = @o(z), wi(0,2) = Yo(z),

has been studied. Assuming that ®, and ¥y are real-valued and that ||\Ilo||iz /2+
V@b, /p < |0l /(g + 1), it was shown that [jw(t,-)||;» blows up in fi-
nite time if [ ®¢(z)¥o(x)dz > 0, and that ||w(t,-)| . decays (for ¢ — oo) if
[ ®0(z)¥o(z)dz < 0.

The life span of periodic analytic solutions to the nonlinear Cauchy problem

wy = F(z,w, Dw, D*w), w(0,z) = \®(z), w(0,z) = \T¥(x)

has been studied in [4]. Assuming that this equation is weakly hyperbolic at
(2,0,0,0), the estimate Tp(A) > Clog |log A\| was proved.

Our approach relies on a certain decomposition of the solution and the re-
duction to a hyperbolic 2 x 2 system of second order. This technique has been
developed in [15], where the semilinear case has been studied. This method con-
sists of several steps, which are performed in the Sections 2 to 8. A more detailed
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description can be found at the end of Section 2. The blow—up of solutions for a
variant of (1.1) is shown in Section 9.

We employ the standard notations 9, = 2, 9, = 2; H*(X) = W§(X) are
the usual Sobolev spaces on an open set X, and Cp°(X) denotes the linear space of
all functions that are bounded and continuous together with all their derivatives.

2 Transformation into a System

In order to be able to derive a priori estimates for (1.2), we shall transform this
Cauchy problem into a second order system. The main advantage is that we will
have more information about the principal part available.

Set u(t,z) = Ow(t,z), ¢(x) = 0, P(x), ¥(z) = 0,¥(x). Assuming that w is
a solution to (1.2), we find that u solves

uge(t, ) — Oz (a(u(t, z))0yu(t, x)) =0, (2.1)

u(0,z) = d(z), w(0,z)=v().
If ¢p(wg) = ¥(xo) = 0, then (OFu)(0,z9) = 0 for all k& € N. This suggests the
educated guess

u(t,z) = ¢(x)g(t,x) + ¥ (x)h(t, ),

g(0,2) =1, h(0,z) =0, g(0,z)=0, h0,z)=1.

A direct calculation gives us uy = ¢gy + Yhy and

Oz (a(u)uz) = a(u)(Pgez + Vhoa)
+d/ (W)ua(dga + Vh) + 2a0(u)(dg + Vh)*($aga + Ysha)
+ (69 + h) (a0 (Wu(Pezg + Yuah) + a1 (w)(Pzg + ¢uh)?),
which leads us to
P9t — Ox(a(u)ga) — 2a0(w)ug(Pege + Yuha) — cg)
+ Y (hy — Oz (a(u)hy) — 2a0(w)uh(Prgs + Yihs) — ch) =0,

where we have introduced

c= C(LL’, g, h) = aO(u)u((bmcg + '@[szh) + a (U)(%g + '(/th)Q

Now we define the vector U = (g, h)T of unknowns and

~ (a(é(x)g + w(@)h) 0
Al U) = ( 0 a(@(x)g + wm)h)) ’ (22)

B(e. ) = 2an(0la)g + s @(alg + viom) (S0 )

Cla,U) = (C(‘”(’)U) C(x?U)) . (2.4)



Clearly, if we are able to find a solution U = U(¢, z) to the Cauchy problem

02U — 0, (A(z,U)0,U) — B(x,U)0,U — C(z,U)U =0, (2.5)
U(Oa ‘T) = (17 O)Ta Ut(Oa I) = (07 1)Ta

then the function u(t,z) = ¢(x)g(t,z) + ¥ (x)h(t, x) solves (2.1).
In case of (1.6), we obtain the Cauchy problem
02U — 0,(Ax(2,U)0,U) — Ba(z,U)0,U — Cx(x,U)U = 0, (2.6)
U(Oa .I) = (17 O)Ta Ut(Oa I) = (07 1)Ta

where Ay, By, C) are defined as in (2.2)—(2.4), with (¢, ) replaced by (Ap, Ay).
We will consider a linearised version of (2.5),

02V — 0,(A(z,U)0,V) — B(z,U)d,V — C(x,U)V = F(t,z), (2.7)
with one of the following initial conditions:

V(0,2) =Vo(z), Vi(0,z)=Vi(z), (2.8)
Vto,x) = Vo(x), Vilto,z)=Vi(z), 0<to<T, (2.9)

where U = U(t,x) is some vector valued function with

=)

The paper is organised as follows. In Section 3, we study the behaviour of
A = A(z,U(t,x)) under the condition (2.10)7. Using results from [15], we shall
derive a priori estimates in Sobolev spaces for a solution V' to (2.7) in Section 4.
Then, a regularisation argument will enable us to prove the existence of a unique
C* solution V to (2.7) in Section 5. By means of Nash—-Moser—Hamilton theory,
the existence of a local C™ solution U to (2.5) will be shown in Section 6. The
life span of this solution is studied in Section 7, leading to a proof of Theorem 1.4.
Finally, Theorem 1.2 is proved in Section 8. The proof of Theorem 1.5 relies on a
careful analysis of the dependence of all constants on .

<e< 1. (2.10)1
CL([0,T)xBRr)

3 The Separating Curve

Assume that U = (g,h)T is defined on [0,7] x Br and fulfils (2.10)7. Setting
U(t,z)+U(—t,x) := 2U(0, ), we extend U as a C! function to [-T,T] x Bg, and
have ||U(t,-) — (1,t)THC1([7T$T]XBR) < &, allowing some modification in e. The
next proposition describes the behaviour of the function a.(t,x) = a(p(x)g(t, z) +
Y(x)h(t,z)) in a neighbourhood of the line {0} x Bg.
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Proposition 3.1. Let a = a(s) satisfy Condition 1, and assume that ¢, € C}(R)
are compatible data, i.e., ||¢|| . < M. Introduce the notation

Qpy = {z: [o(2) + [¢(2)| > 0},

Then there are constants €, a, T > 0 such that for every U = (g,h)" with (2.10),
there is a v € C1(Qgpy) such that a.(t,x) = a(d(x)g(t, z) + Y(z)h(t, z)) satisfies

aay(t, ) — Opas(t,z) >0 1t <y(x), (t,z)€[-T,7] X sy, (3.1)
aay(t,z) + Oras(t,x) >0 1t >7y(x), (t,x)€[—T,7] X Qpy, (3.2)
0. (@) 0 @) < cre Dy (33)

Moreover, the function v has the same regularity as ¢, ¥, and U; and the constants
e, 7, a depend only on M, Cy, ||(¢,¥)] o1

Remark 3.2. The curve {t = v(x)} separates the (¢,z) space into two parts. In
the following section, different methods will be employed in both parts in order to
derive a priori estimates of the solution V of (2.7).

Remark 3.3. Condition (3.3) means that the curve {¢ = v(z)} is noncharacteristic.

Proof. This proof is based on ideas from [15].

Set M" = [|¢|l e < M. If 7 < (M —M")/(2||¢)]|;~) and [t| < 7, then
16+ il e < (M+A1)/2. 100 < & < co(M, M, [ o), then g + 6hl| e < M
for [t| < 7 and U = (g,h)7T satisfying (2.10),; and the mapping t +— x(t;z) =
h(t,x)/g(t,x) is invertible for every |x| < R, |t| < 7. Assuming e7 < 1/6, we get

IX(t ) —t] < 2e+[t]/2,  |x(t2)] < 2(e +|t]), (3-4)

since |x:(t;2) — 1| < 1/2. Then the inverse function y~!(s;x) of the mapping
t — x(t; o) satisfies |x~1(s;2)| < 2(¢ + |s|). For every r > 0, we set

Qi = {x € Qg+ [P(2)] < rly(2)]}-

Clearly, if z € QF,,, then 1(z) # 0. Assuming = € Qgy \ Qf,,, we have

|0(2)g(t; x) + Y (2)h(t, )| = [d(2)lg(t; )(1 = |x(;)|/),

¢
¢(x)g:(t, ) + (@) he(t, )|
|0sa(t, 2)| < Chax(t, ) 5(0)9(t.7) + @)t D)] (3.5)
6()gr(t)| + @bt
< Cuax(t,x) 6(2)lg(t2) (1= |x(t;2)|/r)

er+14¢ 1
l—e r—|x(t2)l

ax(t, x)

< Chax(t, )

(2+7r)C,
T r—|x(t )



if |x(t;x)| < r, due to (1.5). Trivially, if x € QZ:/,» then

¢(x) | N Mg + 27 [[97]] 1
()|~ ¥ ()|

Now choose some odd function 8 = §(s) € C§°(R) with supp C (—2,2) and
18110 < 2, |8']l 1« < 2, satisfying sB(s) < 0 and G(s) = —s, —1 < s < 1. Then
we define the separating curve by

y(z)=x"" <7"ﬂ (qu/)(é«“))) ;x> , 0<r<l.

We see that |y(z)| < 4(e +r). Now we check that this function v = y(x) satisfies

(3.1)~(3.3) for small r. If x € QF,,, then —¢(z)/¢¥(x) = h(y(z),z)/9(v(z),r). In
case t < y(z) we have —¢(x)/v¥(x) > h(t,z)/g(t, z). Assuming

0

(3.6)

e(l+7r) <1, (3.7)
we then obtain

P(@)ge(t, x) + Y(x)hi(t, )
¢(x)g(t, x) + ¢ (x)h(t, z)

which implies

<0,

aay(t,x) — Orax(t, ) = aa.(t, )
—a'(¢(x)g(t, x) + P(@)h(t, 2))(¢(x)g(t, ) + ¢ (z)h(t, ) x
o H@)git, ) + ( Yha(t, )

Dg(t,z) + p@h(tr) =

9
for any a > 0, see Condition 1. The case t > y(z) can be considered similarly.
Now assume that z € Qgy \ Q5. [X(t;2)] < 7/2. According to (3.5),

(2+1r)C, w bz (4+2r)C,
s

which proves (3.1) and (3.2) with

|Ora(t, x)| <

a’*(tvx)v

r r (4+2r)C,
L A )
v Tep v
see (3.4). It remains to check (3.3). This holds true for z € Qf,, since then the

left-hand side vanishes. Now let z € Qg \ ng, but z € Qi’;p, which implies
rlY(x)] < |¢(z)| < 2r|y(z)|. By elementary computation,

B (¢(x)/(r(x))) 0 (p(x) /() _ Ou(h(t, x)/g(t, x))
Oy (h(t, x)/g(t,x)) t=y(2)  Op(h(t,x)/g(t,2)) lt=r(x)

2e < (3.8)

v'(z) =
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From (2.10), we obtain ||0z(h/¢)||; < (
Consequently, according to (3.6) and (1.4

11| oo + 27 [19"[] e
(@)
a.(y(z), 2)(7(x))* (3.9)

/ r / - 2
< 3206090 (0).2) + (a0, ) (U= 2= )

< 32Cur*(29(1(@),2) + 5= + 1)/ ((10/ll 1 + 20 [9']1)% + 013 )
<1/4

24 r)e < 2 and |0,(h/g)| = |x¢| > 1/2.
)

Y ()] < 4 +4,

if r is sufficiently small, compare (3.8). It remains to consider © € Qg \Qiib Then
y(z) = x~1(0; x); hence |y/(x)| < 4e. Then we need

ax(y(2), 2) (7 (2))* < 32Ca (9]l o + 7 W]l e )%e® < 1/4. (3.10)
We choose r according to (3.9), and then e, 7, a as in (3.7), (3.8) and (3.10). O

Remark 3.4. In the case of (2.6), ¢, 7, a will depend on A. Careful checking of the
proof shows 7 = O(A"1/2), 7 = O(A"Y2), a = O(1), e = O(\'/?).

Remark 3.5. Counsider (2.6) and choose €, 7 as given in Remark 3.4. Suppose that
U = (g,h)7T satisfies (2.10) with that 7 and that . Then we have, for all A,

> 1080 Ax(m, U)| + 10207 Ba(x, U)| + 020 Ca(x, U)| < Ci.
la|+]BI<k

From Lemma 10.1, we conclude that

1ANC Ut ey + 1B UG D e sy + 1O UE D e,
< CRAL+ U ) 52) T+ 1T i)

for k£ > 1. By computation,

|02a.(t, )| o < CAAH+ 02U, )| 1oo)-

4 A Priori Estimates for (2.7)

The system (2.7) can be written in the form

OV — a,(t,x)02V — B(t, )0,V — C(t,z)V = F(t,x),
V(0,2) = Vo(z), Vi(0,2) = Vi(z), (4.1)



where B(t, ) = B(x, U(t, z))+8,a.(t, z)I, C(t,x) = C(x, U(t,z)). More generally,
we consider the Cauchy problem

OV — a,(t,2)02V — B.(t,2)0,V — C.(t,2)V = F(t,z), (4.2)
V(to,z) = Vo(z), Vilto,z) = Vi(z),
where a,, By, C, are functions satisfying the following hypothesis.

Hypothesis 1. (a) a.(t,z) = a(d(x)g(t, ) + P (x)h(t, z)), and a = a(s) satisfies
Condition 1,

(b) |B.(t,2)|? < La(t,z) for some L > 0 (Levi Condition),

(c) 6,0 € C3(R) with supp(6, ) C Br = {|z| < R}, and 6] < M.

(d) the coefficient a, admits a separating curve in the sense of Proposition 3.1,
(e) the numbers € and 7 from (2.10),, (3.1), (3.2) are chosen as in Proposition 3.1.

For the proof of (b) we only recall Condition 1 and Glaeser’s inequality [8],
' (@)” < 2[lellca gy e(@),

for every function e = e(x) € C?(R) with e(x) > 0 for all x.

Now we give estimates of |V (¢, z)| separately in the both zones {z: v(x) > t}
and {z: v(x) < t}. Our approach is based on a work of Manfrin, we only list the
results and refer the reader to [15] for the proofs. See also [16].

We introduce the sets

D) ={(t' z): z € Qpy, 0 <t <min{y(x),t}},
Gt) ={(t',z): v € Qpy, max{y(x),0} <t' < ¢},

and define the energies
8(t71‘) = |V;;(t,.%‘)|2 + a.(t, )| Vi (2, $)|2 + |V(t73;‘)‘2,

El(t):/ ehte(t, x) du,

{z: y(@)>t}

Eo(t) = e P2 /L V|V ()2 da dt.
(t)

The following results have been proved in [15], Lemmas 5.1 and 5.2.

Lemma 4.1. Let V(t,x) be a solution of (4.1), (4.2) and assume Hypothesis 1.
Then there is a 010 € R,

01,0= —const.(l+a+ L+ sup] H(ﬁa*(t, -)HLM + ||C. (¢, ~)HLOO(BR)), (4.4)
0,7
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such that if we define E1(t) with 61 < 01, the following estimate holds:

1
E(t) + / D (y(2), ) da (4.5)
{z: 0<y(2)<t}

< E(0) + // Y|P )P dedt!, 0<t<T.
ID(t)

Lemma 4.2. Let V(t,x) be a solution of (4.1), (4.2) and assume Hypothesis 1.
Then there is a 0,

2.0 = const.(a + L + sup ||3 a(t HLOO (4.6)
[0,7]
such that if we define Eq(t) with 63 > 03, there is a B2 > 0,
B2.0 = const.(1 + 7%)x (4.7

X [sur;u +03 + L+ [|0Za.(t, )| oo + 1Bt )l + 1C(ts ) oo )

such that for Bz > P20 and t € [0, 7] we have

¢
t) §/ 67628/ P27 e (y(2), z) dx ds
0 {z: 0<v(z)<s}

t
+/ e_ﬁ"‘s/l V(' 2)|? do dt’ ds
0 (s)

1 — e Pt 9 9
————/ V(0,2) + [Vi(0,2)|? da.
/82 {z: v(x)<0}

Moreover, almost everywhere in [0, 7] we have
/ OV (1, 2)? dr < e’ Byt (48)
{z: y(z)<t}

+/ PO (y(a),2) du
{z: 0<v(z)<t}

+/ V(0,z)* + |V, (0,2)|? dx—|—/L V|t 2)|? dadt’.
{z: 'y:v)<0}

Remark 4.3. The above two estimates have been proved in [15] in case of

ax(t,x) = ao(t, 2)(¢(2)g(t, @) + v (2)h(t,x))*, g€ Ny,

where ag > § > 0 is some C? function. However, in the proofs of Lemmas 5.1 and
5.2 in [15] this special form of the coeflicient a, was never used. Actually, it suffices
to assume that a, admits a separating curve in the sense of Proposition 3.1.



11

Now we are in a position to estimate the I?(Bg) norm of V (¢, x).

Proposition 4.4. Let V =V (t,z) with 3V e [>°([to, 7], H>I(Bg)), j = 0,1,2,
be a solution of (4.2), (4.3) and assume that Hypothesis 1 holds. Then there is a
constant Cy such that for all t € [to, 7] we have

V2 () (4.9)
t
<G, (nvo(-)nzl(BR) HIVAiOI2 5, + / 1E (s, )12 510, ds) :

The constant Co depends only on T, o, L, and the norms supyq .y [lax(t, ~)||CQ(BR),
SUP[o,7] ||B*(t7')Hcl(BR)7 HC*(H')HL&([O,T]XBR)-

Proof. Assume for a moment that ¢y = 0. If € Bg \ Q4y, the Cauchy problem
(4.2) degenerates into

OV — C.(t,x)V = F(t,x),

which directly leads to an estimate of |V 12(p,\q,,,) in terms of [[Vol| r25,0,.,)»
HV1||L2(BR\Q¢ )» and ||F(s,~)||H(BR\QW). Therefore we may restrict ourselves to
the case = € 0yy. Then we can apply the Lemmas 4.1 and 4.2. We set 6; = 619,
02 = 02, and Bz = B20(02). Let ¢ € [0, 7] be a number such that (4.8) holds. By
Sard’s Lemma, the set of all ¢t with

meas{x € Qgy: y(z) =t} >0

has Lebesgue measure 0. Assume that ¢ is not from that set. Then we have

/ |V(t,x)\2da::/ |V(t,x)\2da:+/ V(t, )2 de
Qpyp {z: v(z)>t} {z: v(z)<t}

< e B (t) + Bael® 0 By (2)
4 e 02t / 2@ e (y(x), z) dx
{z: 0<y(z)<t}

_ 2 2
+e 92t(||V0(')HL2(Q¢¢) + V1Ol z2,,)

+ e 02t // ef2t’ |F (', x)|* dadt’,
G

due to Lemmas 4.1 and 4.2. Applying these lemmas once more, we get

2
||V(t7 .> ||[P(Q¢,/,)

t
< € (I%O ) + IO + [ 176, d5)

This gives us the desired estimate for a.e. t € [0, 7]. Since 9;V belongs to the space
L=([0, 7], HY(BRr)), we have shown (4.9) for all values of ¢.

Now let tg > 0. We set V(L x) = V(t+to,x). Since Hypothesis 1 is invariant
under the translation ¢ — t 4 to, we get from (4.9) an estimate for V (¢, z). O
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Remark 4.5. Consider (2.6) and suppose ||02U (t, -)||LOC < C, uniformly in A. Then
Co = Co(A) < exp(C(1+7(N)?)), for all ), see Remark 3.5 and (4.4), (4.6), (4.7).

By standard arguments, we can estimate derivatives 0¥V (¢, x).

Proposition 4.6. Let ¢, 7 be determined as in Proposition 3.1, and suppose
that U satisfies (2.10),. Let k € N, and V with o]V € L®([to, 7], H**279(BR)),
j=0,1,2, be a solution to (2.7), (2.9). Then the estimate

IV () e gy < Crl(L+ sup [T (s, ) sz () (4.10)
[tht}

t
x (ll%(')H?{m(BR)+||V1(')||?qk(BR)+/t 1 (s, Wk (0 dS)
0

holds for 0 <tqg <t <7, where Cy depends only on 7, a, L, and the norms

[Sou% ”U(t’ ')||H3(BR) ’ HA(v ')||Ck+2(BR><[1—a,1+5]><[7'—5,7'+5]) )
||B(7 -)||Ck(BR><[1—E,1+E]X[T—E,T+E]) ) HC(7 .)||Ck(BRX[1—8,1+E]X[T—E,T—‘,—E]) :

Proof. The estimate (4.10) holds for k = 0, see Proposition 4.4. Assume that (4.10)
is true for k replaced by k — 1. We set V*(¢,2) = 0¥V (¢, 2) and obtain

PVE — Az, U)0?VF — (k4 1)(0, A(x, U(t,x))) + B(x,U)) 9, V*
— ((k(k +1)/2)(02A(2,U(t,2))) + k(9. B(z,U(t, x))) + C(x,U)) V*
=Fr=0F+ L+ L+L+1

k
=OF+) (’;) (0L A(z, U(t, x)))VFT21
=3

b k
+ Z (?) (ai+1A(a?, U(t,x)))Vk-H_l + Z (I;) (8;3(1:, U(t79€)))Vk+1_l

=2 =2

= |l

+> (lf) (0LC(a U1, 2)))VH".

=1

By Proposition 4.4, we deduce that

VR, [ < Co (I%(dllim + Vi) e +/t 1P (s, ) 52 ds) :

For the estimate of I; and I5, we have to consider terms of the form (8;”A)Vk+2_m
with m = 3,...,k + 1. From Lemma 10.1 and Sobolev’s embedding theorem,

1@ AU VI (8| < N0 AC U D e [V (8

x

S CUUE M )+ NUE ) gmen) 1V sz
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Similarly, we get

I+ L < C(IUE o) IV E ) o

k
+CUUE ) DA+ NUE ) msn) [V E I pgrssom -
m=3

Then it follows that

IV (x5, < Co (||vo<~>|\zk+1 + ||v1<~>|\i1k)
t
+Co [ NF, M + IV (s )15, ds

to

+ C(sup ||U(s, ')||c2(BR))><

[t07t]
k41 t
2 2
X Z Sup(l + H[](S7 ')”H"""’l(BR)) / ||‘/(S7 ')||H’“+2_7"(BR) ds.
m=3 [to,t] to
From the induction assumption,

t
2 2
s [U (5. ) ey [ IV (5. o 5
[to.t] to

< Ciosup 105, e oy (1 +sup s, ->||ifk+4-m<3m) x

[tﬂvt] [tht]
t
2 2
9 (nvo(-)nzk(BR) VOB + [ 1P s ds) |
0

By Nirenberg—Gagliardo interpolation,
1—m= 2
10 M s gy < C U s, )||Hk+2<BR 1T (s, W ars () »
_htl-m
10, Mgty < C NG, Mgt UG Moo

for k > 2. This completes the proof. O

5 Existence of Solutions to (2.7)

Proposition 5.1. Let a = a(s) satisfy Condition 2, and let ¢,7p € C§°(R) be
to a(s) compatible data, i.e., |||~ < M. Assume supp(¢,) C Br = {|]z| <
R}. Choose €, T as in Proposition 3.1, and suppose that U € C?([0,7],Cs°(BR))
satisfies (2.10),. Finally, assume that F € C([to, 7], C;°(Br)), Vo, Vi € C;°(Br).
Then the problem (2.7), (2.9) has a unique solution V € C?([ty, 7], C°(BR)).
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Remark 5.2. Fix 0 < R’ < R with supp(¢,v) C Bg/. Then the functions A(z,U),
B(z,U), C(z,U) vanish for R < |z| < R; and the existence of a solution V' €
C?([to, 7], Cs°({R' < |z| < R})) is clear. Hence, we assume in the sequel |z| < R’.

The proof of Proposition 5.1 is based on an approximation argument.

Definition 5.3. Let o = o(s) be an even function from the Gevrey space G¢(R),
0%0(s)| < C* R4, keN, seR, 1<d<2,

and supp o C (—1,1). Additionally, suppose that so’(s) < 0 < o(s), ffooo o(s)ds =
1, and write g,,,(s) = mo(ms) for 1 < m € R. Then we define for large m

a0,m(5) = (a0 % 0m)(5),  am(s) = s%aom(s),  arm(s) = ap,(s)/s,

() = (% 0m)(2), VYm(z) = (Y * 0m) (),
Un(t,z) = (U *xom)(t,x), Fnlt,
‘/O,m(x) = (VO * Qm)(l'), Vl,m(x) = (‘/1 * Q’m)(x)7

where * denotes the usual convolution.

Lemma 5.4. Replace the interval By = [—M,M] of Condition 1 by some
shrinked interval [-M',M'], 0 < M’ < M. If m is large enough, then the co-
efficient a,,(s) satisfies Condition 1 with C,, replaced by C, + 3.

Proof. Suppose that m is so large that a,,(s) is well defined on [—M’, M’]. The
properties of the convolution imply 0 < agm,(s) < C, for all |s| < M’. We have

0<s / ay(s — rymo(mr) dr = $9sag,m(s),
since ag and g are even functions. From r¢’(mr) < 0 we deduce that
50500, m(s) = s/ag(S —r)mo(mr) dr
=5 [ ag(s — r)m?o (mr)dr < /(8 —r)ag(s — r)ym?o’ (mr) dr
— [ (aals = 1) + s = r)abs = )ymo(mr) dr < (Cu-+ Daon(s).

Clearly, 0 < sal,(s) < (Cq + 3)am(s). This completes the proof. O

m

Proof of Proposition 5.1. We consider the linear system

- Om(ﬂ?, Um)vm = Fm(tv JC),
Vm(O,x) = ‘/O,m(x)a 8tvm(07x) = ‘/i,m(x)v
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where A,,,, By, Cy, are defined as in (2.2)—(2.4) with a(s) replaced by an(s). Ac-
cording to [14], the problem (5.1) has a unique solution V,,, € C?([to, 7], G(Bg/)).
Similarly to Section 4, we set

U, (8, T) = A (D (T) g (8, T) + Y (@) B (E, @),
By m(t,z) = By (2, Up(t, 7)) + Opaw m(t, x)I,
Cim(t, ) = Crp(z, Uy, (¢, ).

Obviously, a«m — @+, Bim — B, Cim — Cs in the topology of the space
C([to, 7],C5°(Brr)). Due to Proposition 4.6, we have uniform estimates

sup ||Vm(t")||Hk(BR,)§Ckv m > mg, keN.

[to,7]

Then (5.1) yields ||[V; (-, -)||Cz([t0’7]’Hk(BR,)) < Cy. By the Arzela—Ascoli theorem,
there is a subsequence {V,/} converging in C'([ty, 7], H*"1(Bg/)) to some limit
V) which solves (2.7). By Proposition 4.4, solutions to (2.7) are unique. There-
fore, V¥) = V() for all k, I; hence we have a solution V' € C2([t, 7], Cs°(Brs)). O

6 Existence of Solutions to (2.5)

Now we prove the existence of C* solutions U to (2.5) for small times. In the next
section, more attention will be paid to a better description of the life span of this
solution. We shall show that, under suitable assumptions, a solution U to (2.5)
can be extended to some longer interval. Therefore, we now discuss the equation
(2.5) with slightly more general initial conditions.

Define A, B,C as in (2.2)—(2.4), and consider the Cauchy problem

U — 0, (A(z,U)0,U) — B(x,U)0,U — C(z,U)U = 0, (6.1)
U(Tfo,x) = UQ(Z‘), Ut(to,l‘) = Ul(l‘),
||Uo() — (]"tO)THC'l(BR) < €p, HUl() — (0, 1)THL°°(BR) < €p, (62)

Proposition 6.1. Let a = a(s) satisfy Condition 2, and let (¢,v) € C°(R) with
supp(¢, ) C Bg be to a(s) compatible data, i.e., ||P|| 0 < M.
ot Then there is an €y, depending only on M, C,, ||¢||C1(BR)’ ||ch'1(BR), such
at:
For every Uy, Uy € Cg°(Br) with (6.2) there is some Th >ty and a unique
local solution U € Cy°([to, T1] x Br) to the Cauchy problem (6.1).

The proof bases on the Nash—Moser—-Hamilton theory. We recall the main
results of that theory and refer the reader to [10] for the details.

Definition 6.2. (a) A graded (Fréchet) space E is a Fréchet space whose topol-
ogy is induced by a grading, that is a sequence of seminorms {||-||,, : n» € N}
such that [le][,, < |le]|,, for all e € £ and all n € N.
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(b) A tame linear map is a linear map L € L(E, E) between two graded spaces
FE1, E5 such that constants r,b € N exist with

ILell g, < Cnllelg, nirr €€ Er, n2b,
where the C,, do not depend on e € Fj.

(¢) For a Banach space B, we define the graded space > (B) of exponentially
decreasing sequences by

> (B)= {{Uk}lé“ioi v € By [{ve}l, = D e™ Jokllp < o0, m e N}~

k=0

(d) The graded space E is a tame space if some Banach space B and linear tame
maps Ly € L(E,Y (B)), Ls € L(}.(B),E) exist with the property that
LoLy is the identity on FE.

Ezample 6.3. Spaces of Cp° functions on smooth compact manifolds X (with or
without boundary) are tame (see [10], pp. 135-138), when we define the seminorms

el = Ol (x) 1 < p < oo.

Definition 6.4. Let P: M C E; — E5 be a (nonlinear) mapping between the
graded spaces E71, Fy, and be defined on the open set M. The map P is called
tame if for each point e* € M there is a neighbourhood e* € 2 C M and constants
r, b € N such that

1Py < Cu(l+llellg, pyr)s €€2, n=b

Remark 6.5. A map is a tame linear map if and only if it is linear and tame.

Definition 6.6. Let P: M C Fy — E5 be a tame map. Then, P is called smooth
tame if it is C*° and D™ P is tame for all n € N.

Example 6.7. Nonlinear partial differential operators acting on the tame space
Cp°(X) are smooth tame. Sums and compositions of smooth tame maps are smooth
tame (see [10], p. 146).

The following implicit function theorem is the crucial tool in the following.

Theorem 6.8 (Nash—Moser—Hamilton). Let E1, Es be tame spaces, M C E;
be an open set, and P: M C E; — FEs be a smooth tame map. Suppose that the
derivative DP(u) € L(E1, E2) has a right inverse VP(u) € L(Es, Ev) for each
u € M, which is smooth tame as a mapping VP(u): M x Ey — Ey. Then P is in
M locally invertible, and each inverse is smooth tame.
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Proof of Proposition 6.1. We show U € C?([to, T1], C5°(Br)). The smoothness in
time then follows from (2.5). We fix the tame spaces

E = (CQ([t()vT]vCl())O(BR)))Qv
Ey = (C([to, T), C°(Br)))? x (C°(Br))? x (C;*(Br))?,

lell, . = sup (et Marn iy + ettt Man iy + et Mn o) ) -
0,

I(er,err,errr)ll g, .m

= sup ler(t, W en ) + lerrOl g gy + lerrr() g sy -
0,

where T' with 0 < T — tg < 1 will be chosen later. The map P: Ey — Fs is
PU) = (an — 0 (A(z,U)0,U) — B(x,U)0,U — C(z,U)U,

U(t07x) - UO(J")a Ut(to,l‘) - U1(1‘)>7
which is a smooth tame map. To fix the open set M, we introduce

Uu(t,2) = Up(a) + (¢~ t0)Us(2) + 3 (¢ £0)20, (A(z, Up())Up o ()

+ 5t 10 B, Uo(@))Uo (@) + 3 (¢ — 10)2Ca, Up(a))Uo(),

and define

M=A{U € Er: |U = Usllcr(gy, 1% Br) < €05 [fug NU ) gapry < C}

0>

with some constant C' > 0. If we fix ¢g = ¢/10 and choose T' = T'(g) with 0 <
T — tp < 1 appropriately, then each element of M can be extended to [0,T] X Br
in such a way that (2.10)7 holds, with € chosen as in Proposition 3.1. Obviously,

P(U)(t, ) = ((t — to)Z(t, x),0,0)

with some Z € C([to,T], C;°(Br)). Choose some function x € C*°(R) with x(t) =
0fort <1and x(¢t) =1 fort > 2. Then ((t—to)x(m(t—to))Z(t,x),0,0) converges
to ((t — to)Z(t,x),0,0) in the topology of Es if m tends to infinity. Therefore,

every neighbourhood of P(U,) contains elements of the form (Z(¢,x),0,0) where
Z(t,x) =0 for tg <t < Ty; and T3 — tg > 0 is small. If we are able to show that
the image P(M) contains a neighbourhood of P(U,) in Es, then we have proved
the existence of a solution U to (2.5) in [tg, T1] X Br. More precisely, we show that

P is locally invertible in the neighbourhood M.
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The Fréchet derivative DP(U) is a linear map V +— (F, Vp, V1) with

F =02V — 0,(A(z,U0)0,V) — 0,((Ap (z,U)V)0,U) (6.3)
— B(z,U)8,V — By(z,U)V,U — C(x,U)V — Cy(z,U)VT,
Vo(z) =V(to,z), Vi(z) = Vi(to, ).

Here we have introduced the notation
Ay(z, U)V =d (g +ph) (¢, 0)VI, U= (g,h)", V = (vi,v2)7,

where (¢,9)V = ¢v; + 1hvs is the usual R? scalar product. This Cauchy problem
is of the form (2.7); and Hypothesis 1 is satisfied if U € M. We note that the Levi
condition (b) follows from |a’(s)|?> < C2a(s), see (1.5). Then the Propositions 4.6
and 5.1 imply the existence of an inverse map

VP: (UFVy,Vi)—V, MxEy— E;
which satisfies

;ug] IV ey < Ce+ U g, pro) 15 V0, V)l gy i -
0

From the equation (6.3),

VIl x < Ce(+ Ul g, gya) 1CF Vo, Vi)l g, pq2 -

Hence VP: M x Ey — Ej is tame, see [10]. The proof is complete if we show that
V P is smooth tame. We proceed by induction and only show that D'V P is tame;
the higher derivatives D*V P can be considered in the same way. We find that

v = DYV P(U, F,Vy, Vi){6U,8F,6Vy, 6V1 },

where V(1) € E; depends linearly on (§U, 6F, 8V, 6V1) € E;y x Ey and nonlinearly
on (U, F,Vy, V1) € M x E5. More precisely,
2V — 9, (A(z, U)0,VY) — 0, ((Ay (2, UV I)a,U)
— B(z,0)0, VY — By (z, 1) VWM,U — C(2, U)VYV — Oy (z, U)VVU
= 6F + R6U,
VO (to,2) = oVo(z),  V\V (to, 2) = 6VA (),

where R is a linear differential operator depending on U and V = VP(U, F, Vo, V7).
By Proposition 4.6, D'V P is tame. This completes the proof. O
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7 A Life Span Criterion

In this section, we describe the life span of the C'* solution U to (2.5) mentioned
in Proposition 6.1.

Proposition 7.1. Let the assumptions of Proposition 6.1 be satisfied. Then there
is a constant Ty > 0 depending only on M, R, ||(a0,a1)||03(BM), ||(¢,1/))||C5(BR);
and there is a unique solution U € Cp°([0,Ty] x Bg) to (2.5).

The proof is split into the Lemmas 7.2 and 7.5.

Lemma 7.2. Let the assumptions of Proposition 6.1 be satisfied, and let €, T be
the numbers determined in Proposition 3.1. Finally, let U € C?([0,T),Cs°(Br)),
0<T <7, be a solution to (2.5) which satisfies (2.10). Then the estimates

WU e (7.1)
t
< Cr(1+ )0, / 0k (10 (5, )+ 105, )i )
2 -
?(;lr%]) HU(Sa ) - (L S>THH3(BR) < t(%,gg,(?él%]) ||U(S’ )||?—13(BR)) (72)

hold for 0 <t < T, where ok, 0r: Ry — Ry are certain continuous and increasing
functions, and Cy depend on ||(ao,a1)|cr (g, (@)l orre(pyys and R.

The proof is based on an a priori estimate similar to that of Proposition 4.6
for the Cauchy problem (2.7), but now we take advantage from the fact U = V.

Lemma 7.3. Let m,n € N withm > 2, n >3, and X C R be a bounded domain.
Then

[wll gm0y @0l (x) < Cllwll graxy |0l grmin—2xy,  w € H™H72(X).

Proof. By Sobolev’s embedding theorem,

lwllgmxy 1wl g xy < Clwll gm0y [wllgn (x0) < Cllwllgs o) [wllgmsen—2(xy 5
where we have used the complex interpolation method,

Herl(X) — [I{'s()()7 Heran(X)] Hn(X) — [113()()7 Hm+n72(X)]

6,7’ 67
with 6; + 6, = 1. ]
Proof of Lemma 7.2. We write (2.5) in the form
0PU — A(z,U)o*U
— A, (2, U, — Ay (2, U)U, U, — B(z,U)U, — C(x,U)U =0,
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where A, (z,U) = a'(¢g + Vh)(dz,:)UI, and (¢, ¥, )U is the R? scalar product
$29+ o h. Similarly, Ay (x, U)U, = a'(¢g+1h)(¢,¢)U.1. We apply 9%, set U* =
0kU, and obtain

QPU* — Az, U)O2U*
— (k4 1) (0, A(x,U))0,U* — Ay (z,U)(0,U*U, — B(z,U)0,U"
=Fr=L+L+L+1,

k k
= Z (I;) (a;A(x,U))Uk%»Qfl + Z (llg) (651814;8(33,(]) —|—6iB($, U))qutlfl

=2 =1

k—1

k! L ~

+ 2 Tt O v (@ UYUTUT 4 0(C(a, D)D),
I+m=0 :

From U*(0,-) = (6,U*)(0,-) = 0 for k > 1 and Proposition 4.4,

2 ' 2
946 Moy < o ) 17405 My

We recall that Hypothesis 1 is satisfied because of |a’(s)]? < C3a(s), see (1.5).
Employing Lemmas 7.3 and 10.1, we estimate I1,..., I4. For [ =2 in I;, we find

(02 A, U))Uk||; < C(llallge s 16, )l ) (1 + U] 2) ||Uk||2L? :
For 3 <1 <k, we have
(@A, U217,

< Cllaller s 10l oo s 1085 )l ) (1 + [T N30 1T [
< Cllaller s U1 oo s 1085 )l ) (1 + [T 30) 10 7 -

The term I5 can be discussed similarly. Concerning I3, it is enough to discuss the
case m <[. Suppose k—1>1+m >k—2and ! >2 (I <1is trivial). Then

H (a;f—l—mAU (.’)37 U))Ul+1Um+1 Hiz

2 m 2
< C(llallga s 1@ )l e2) (X + U E) JUFH ] 1T
< C(llallgs s 18, ) =) X+ [UE) 1T 370 10 3 -

Now let 1 <1+ m < k — 3. Then we have
H(algg—l—mAU(x7 U))Ul+1Um+l||iz

< Cllallon 1011 e - 160 ) X+ IO o) IO JO 1)
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By Lemma 7.3,
2 2 m 2 2 2 2
U zgx-m JUFH e 1O e < CNUN g U prems 1U | goma
4 2
< CUIgs 10N g -
In case [ = m = 0 we apply Lemma 10.1 and find

10 Ay, U)UT 2,
< Cllallgrsn 10 o 16, 80) o) (L + U120 U]

The term I is left to the reader, see Lemma 10.1. From a'(s) = saq(s) we derive
llal|crer < Clar]|oe. Then we obtain the estimate

t
(A |mw<@4%mmwm%w+www%%ws

for £k > 1. Since supp(¢,1) C Bg, there is some 0 < R’ < R such that ¢(z) =
Y(xz) =0 for R’ < |z| < R. For such z, the Cauchy problem (2.5) degenerates to
02U = 0; hence U(t,z) = (1,t)T. Then Poincaré’s inequality implies

2
||U(t7 ) - (lat)THL’z(BR) < OR HaﬂtU(ta ')HiP(BR) :

The desired estimates (7.1), (7.2) are then obtained easily. O

Remark 7.4. Consider (2.6). Remarks 3.5, 4.5 and Lemma 10.1 give the refinement

Hag’jU t")HlP(BR)

) t
< Ckec(1+73)/0 N+ 7)1+ U (s, W s () L+ U (s, ) e ) ds

for kK > 1. From this we conclude that

sup |U(s,) — (1, HHs ) < NtChe” A+ (1 +?5£])”U(57')H?{3(BR))7
(7.3)
for all A and all 0 <t < T'. Obviously,
WM(Mm<WMIWU%HW&@UWHm+MM%WWm
< C[|Ax(, U)||H2(BR) H (1 t ||H2(BR)
+[1Ba(@, U)ll = [|(U ( Dell oo + 1O, U)U|
SCMPWU(NWBMHWL — ()| gy + CAL+ ).
Supposing that the right—hand side of (7.3) were less than 1, we find
|Ue(t,-) — (0, 1)THLOO(BR) <CAT(1+ 7). (7.4)
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Lemma 7.5. Let the assumptions of Proposition 6.1 be satisfied. Assume that
U e C*0,T),C°(BRr)), 0 < T < 7, is a solution to (2.5) which fulfils

[U(t,-) - (Lt)THc;([o,T)xBR) < €0, (7.5)
[SUTP) U ) a8y < 00 (7.6)

)

where ¢ is from Proposition 6.1. Then U can be extended to some function U €
C%([0,T"],C5°(BR)), T < T' < 1, which solves (2.5) for (t,z) € [0,T'] x Bg.

Proof. According to Lemma 7.2, [|U(L, )| yr(p,) < Crk for 0 <t < T and all k € N.
The equation (2.5) then gives H@fU(t,-)HHWBR) < Cf for 0 <t < T and all k.

Therefore, U can be smoothly extended in a unique way up to ¢ = T. Now we
consider the Cauchy problem

OPW — 0, (A2, W), W) — B(x, W)0,W — C(x, W)W =0,
W(T,z) =U(T,x), WiT,z)=U(T,zx).

By Proposition 6.1, this problem has a solution W € C?([T, T1], C;°(Bgr)). We set

€T) =
’ W(t,x) :T<t<T =T,

and the proof is complete. O

Proof of Proposition 7.1. From Proposition 6.1 we conclude that there is a local
solution U € Cp°([0,T1] x Br) to (2.5) which satisfies (7.2). By Lemma 7.5, this
solution can be extended as long as (7.5) and (7.6) are satisfied. A lower estimate
To > 0 of the life span of U can then be derived from (7.2). O

Proof of Theorem 1.4. The problem (1.2) can be transformed into the system (2.5)
by means of the reduction presented in Section 2. According to Proposition 7.1,
this system has a unique local solution U € C°([0, Ty] x Bg). For = & supp(¢, ¢),
the system (2.5) degenerates into 92U (t,x) = 0, hence u(t,z) = 0. Therefore,
we have found a solution v € Cp°([0,Tp] x R) to (2.1), which vanishes outside
[0, To] x supp(¢, ). Then the solution w to (1.2) is given by

w(t, x) = / u(t,y) dy,
-R
and it is easy to show that w vanishes outside [0, 7p] X supp(®, ¥). O

Proof of Theorem 1.5. For 0 < A\ < 1, choose e(\) = O(A/?) as in Remark 3.4,
and set g9 = /10, see the proof of Proposition 6.1. Now choose 7 = 7(\) with

A27C5eC (14 (g0 + (17| ragpn))®) < Cooteds  C'AT(L+7%) < e,
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see (7.3), (7.4). Here Csop, is the norm of the embedding H?(Br) C C'(Bg). Due
to Remark 7.4, we then have

[UCt,) = @O gy < €00 U ) = (0,07 o 5, < €0

provided that t < 7. According to Lemma 7.5, the solution U persists in the
interval [0, 7). Finally, 7(\) > C|In \|'/3. O

8 The Case of Non Smooth af(s)

Proof of Theorem 1.2. We transform (1.2) into the system (2.5), where A, B, C
are given by (2.2)~(2.4), and (¢,v) = (®,, ¥,) € C¥1(R). We approximate ag(s),
(), Y(x) by agm, ¢m, ¥m as in Definition 5.3, and obtain uniform estimates

H((bm,wm)”CkJrl ) ”aovaCP(BM/) S C, m 2 mo(M/), MI < M.

We set am(s) = s%a0,m(s), a1,m(s) = a},(s)/s = 2a0,m(s) + sag,,(s). Clearly,

500 (8) = s / ag(s —r)ymo(mr) dr = /(s —r)ag(s — r)ymo(rm) dr

+ /ao(s —r)mo(rm)dr + /ao(s —r)yrm2o (rm) dr
= Il,m(s) + Ig)m(s) + I37m(8).

We see that [|I1mllor + [ T2mlor < Clllaollcr + [lai]lor), since sag(s) = ai(s) —
2a¢(s). Due to |mr| < 1 on supp ¢ (mr),

07 Fan(5)] < laaller [ lme! ()] dr < € faalcr

As a consequence, ||a1,m|o» < C for all m.
Now we consider the Cauchy problem

02U — 0p (A (2, Unn) 02 Upn) — By (2, Upn) 05 Upyy — Co (2, Uy U, = 0,
Un(0,2) = (1,007, U,us(0,2) = (0,1)7,

where A,,, B, Cp, are defined as in (2.2)—(2.4), but with ag, a1, a, ¢, ¥ re-
placed by ag.m, @1,m; Gm, @m, ¥m. According to Proposition 7.1, there is a unique
local solution U, € Cg°([0,Tp] x Bg) for large m, where Ty only depends on
(@0,m,a1,m)llcas [[(@ms¥m)llcs- These norms are uniformly in m bounded. Tak-
ing into account that k > 4, we apply Lemma 7.2 with &k replaced by £ — 1. Then
we find

sup ”Um(ta ')||H’“*1(BR) <C <

,To]
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for all m > mg. By the differential equation, it can be deduced that {U,,} is a
bounded sequence in C([0, Tp], H*~(Br)) N C%([0,Tp), H*~3(Bg)). The Arzela-
Ascoli theorem gives us a subsequence {U,,/} converging in C*([0, Tp], H*~*(Bg))
to some limit U*. Interpolating between the spaces C([0,Ty], H*~*(Bgr)) and
C([0,Ty], H*1(BR)) shows U,,, — U* in C([0,Tp], H*~17¢(Bg)). Especially, we
have convergence in C([0, 7], C?(Bg)), since k > 4. Then the limit U* is a solu-
tion to (2.5). From the weak precompactness of bounded sets in H*~! we deduce
that U,,, — U* in I>°([0,Tp], H*~*(Bgr)). The differential equation then yields
02U € ([0, Ty, H*—3(BR)).

The uniqueness of U* can be shown by standard arguments, Proposition 4.4
and Gronwall’s lemma.

Then we find a solution u € ([0, Ty}, H*~*(Bgr)) to (2.1), which satisfies
0?u € L°(]0,Ty], H*3(Bg)). A solution w to (1.2) then is given by w(t,z) =
f_mR u(t,y) dy, compare the proof of Theorem 1.4.

Finally, we discuss the uniqueness of this solution w. It suffices to consider
the reduced problem (2.1). Let v = v(¢, z) be a second solution to (2.1) with

Ofv e ([0, o], 7 (R)), j =02,
Then the difference z(t, ) = u(t, ) — v(t, x) solves
022 — Op(as(t,2)0,2) — b(t,2)0p2 — c(t, )z = 0

with the coefficients a.(t,z) = a(u(t, z)), b(t,z) = o’ (u(t, z))0zv(t, ), and c(t,x)
is given implicitly by c(t,x)z = (a(u)—a(v))0?v+(a'(u) —a’(v))(0,v)?. We see that
c(t, z) is bounded; and by Condition 1, |b(¢, z)|? < La.(t, ). From Proposition 4.4
we get [|z(¢,)[l 25,y = 0. On the other hand, u(t,z) = 0 for z ¢ Bp, which
implies 02z — c(t, )z = 0. Consequently, z(¢,x) vanishes everywhere. O

9 A Blow-Up Result

We consider the Cauchy problem 1.2 and describe a class of coefficients a = a(s),
and initial data ®, ¥ for which the solution blows up in finite time.

Proposition 9.1. Suppose Condition 2 with ap(0) > 0. We assume that &, ¥ €
C§°(R) are even functions, and

®”(0) >0, ¥(0)>0 or @"(0)<0, ¥"(0)<O0.
Then the Cauchy problem (1.2) has no global C* solution w.

Proof. According to Theorem 1.4, there is a unique solution w € C3°([0, Tp] x R),
for some Ty > 0. Now we show that Tp is bounded from above.

Since a, ®, ¥ are even functions, the solution w = w(t, z) is also even, hence
wy(t,0) = 0 for 0 < t < Tp, which implies w(t,0) = ®(0) + t¥(0). For 0 < t < Ty,
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—e < z < ¢, we have the Taylor expansion

2
k=0

= (2(0) +t¥(0)) +&(t)a* + O(|2f),  €(0) = %‘1’”(0), ¢'(0) =

)(£,0) + O(jzf)

=l

570,

Plugging this into (1.2) and collecting the terms with z2 gives
Eu(t)z® — a(26(t)z) - 26(t) + O(|2]°) =
Eu(t) — (26(1)%a0(0) =0, 0 <t <Ty.
Since £(0) and £’(0) have the same sign, and ag(0) > 0, this ODE has no global

solution, as can be seen from the equivalent formulation

((€)%)e = 4a0(0)(€")s, 0 <t <Tp.

10 Appendix

The following technical lemma is proved by Nirenberg—Gagliardo interpolation.

Lemma 10.1. Let f = f(z,u): Q@ x M — R be some C* function, where Q C
R”, M C RY are domains with smooth boundary, and € is bounded. Assume
k > n/2. Then there is some continuous function gr: Ry — Ry depending on

(s ')||Ck(ﬂxm) such that
17 (@, w(@)l ey < il e ) )L+ ()l e ()

for all functions u € H*(Q) taking values in M. The function oy satisfies

or(s) <Cx sup Y |070] f(x,u)|(1 + s%).

TEDIISS o415 <k
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