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Summary

Edge Sobolev spaces are proposed as a main new tool for the in-
vestigation of weakly hyperbolic equations. The well-posedness of the
linear and semilinear Cauchy problem in the class of these edge Sobolev
spaces is proved. An application to the propagation of singularities for
solutions to the semilinear problem is considered.

1 Introduction

This paper is devoted to the study of weakly hyperbolic Cauchy problems

Lu= f(u)v u(oax) = UO('T)a ut(o’x) = ul(x)a
Lv =0, v(0,2) = up(x), v(0,2) = ui(z), (1.2)

where

L= aMsz c; (t)040; Z)\ )2a;j(t) 0z, Os,

J1 1,7=1

+ Zx ()0, + co(t)0; (1.3)

and A(t) = t> for some I, € N, = {1,2,3,...}.
The special choice of the exponents of ¢ in (1.3) reflects so—called Levi con-
ditions which are necessary and sufficient for the C'*° well-posedness of the
linear Cauchy problem, see [10], [14]. As the basic new ingredient, solutions
o (1.1), (1.2) are sought in edge Sobolev spaces, a concept which has been
initially invented in the analysis of elliptic pseudodifferential equations near
edges, see [8], [18].
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2 1 INTRODUCTION

The assumptions are as follows:

cj,aij,bj,co S COO([O,T()],R), (1.4)
2
ch(t)fj + Z ai;(0)&6&5 > aolél?, o >0, V(t,9), (1.5)
j=1 ij=1
f = f(u) is an entire function, f(0) = 0. (1.6)

We employ standard notations like D = —iV, Dy = —i0;.
The operator L can be written in the form

- <%>_M P <t’ % % A(t)ax> ) (1.7)

where A(t) = fg A(t")dt" and P(t,7,€) is a certain polynomial in 7, £ of de-
gree u = 2 with coefficients depending on ¢ smoothly up to ¢t = 0. Operators
with such a structure arise in the investigation of edge pseudodifferential
problems on manifolds with cuspidal edges, where cusps are described by
means of the function A(t). The singularity of the manifold requires the
use of adapted classes of Sobolev spaces, so—called edge Sobolev spaces. The
principles of forming these edge Sobolev spaces are expounded in Section 2.
A lot of results concerning the well-posedness of the Cauchy problem for
weakly hyperbolic operators have been provided over the last decades.
Under suitable assumptions on the data, the right-hand side, and the
coefficients, the solutions have been proved to belong to the spaces
CH([0, T], H*(R™) (5], [12], [14], [17]), C*(0,T], C>(R™) ([3], [4]), and
Ck([0,T],v*)(R™)) ([3], [11]), respectively, where ~()(R™) denotes the
Gevrey space of order s.
All these function spaces, however, have the disadvantage that their elements
have different smoothness with respect to t and x. We do not know any result
concerning the weakly hyperbolic Cauchy problem stating that solutions
belong to a function space that embeds into the Sobolev spaces H? ((0,T") x
R™), for some s € R, under the assumption that the initial data and the
right—hand side themselves belong to appropriate function spaces of the
same kind.
We are going to introduce Sobolev spaces H*%*((0,T) x R™), where s > 0
denotes the Sobolev smoothness and § € R figures as an additional param-
eter, in which unique solutions u, v to (1.1), (1.2) exist provided that the
initial data belong to suitable Sobolev spaces on R™. These spaces possess
the property that

H: (R xR"

comp

c H*5M(0,T) x R™)
C H{ (Ry x R™)|

) ‘(O,T)XR'”

(0,T)xR™



with continuous embeddings. Furthermore, the space of all smooth functions
on [0,T] x R™ with bounded support is dense in H*%((0,T) x R™).

The spaces H*%*((0,T) x R") additionally reflect the loss of Sobolev regu-
larity observed when passing from the Cauchy data to the solution. Namely,
there are traces

H 2 ((0,7) x R") — H* P00 R u(t, ) = (9]u) (0,2),

forall j €N, j<s—1/2, 8 =1/(l«+ 1), leading to a higher regularity at
t = 0if 6 > 0. The phenomenon of the loss of regularity was first recognized
by Qi Min—You [15] for the equation

Lv = vy — t2040 — (4dm + v, =0, meN, (1.8)

with initial data v(0,2) = ug(x), v4(0,2) = 0. He found an explicit repre-
sentation of the solution v,

v(t,x) = i Cjmt™ (Hug)(z +12/2),  Cpm # 0. (1.9)
=0

Then the assumption ug € H*T(R) implies v(t,.) € H*(R), and this is
best possible. The phenomenon of the loss of regularity makes, e.g., the
investigation of the semilinear problem Lu = f(u) delicate, since the usual
iteration approach in standard function spaces, e.g., in C([0,T], H*(R)),
does not work.

The surprising fact, however, is that the iteration approach is applicable if
we employ the edge Sobolev spaces H*%((0,T) x R™). We will show that
the solutions © and v belong to the same edge Sobolev space. A discussion of
this result in the case of Qi Min—You’s operator is given in Example 5.4. In
other words, the nonlinearity does not induce an additional loss of regularity.
Similar results have been proved in [6], [7], where function spaces

By = {u: 9(t,z, Dy)u(t,z) € C([0,T], *(R™))}

have been utilized. Here ¥ = ¥(t,x,£) is a suitably chosen elliptic pseu-
dodifferential symbol of variable order. These spaces generalize the spaces
C([0,T], H*(R™)). In the present article, the spaces By are replaced by
the edge Sobolev spaces H*%*((0,T) x R™) which admit a more uniform
treatment of space and time variables.

A future challenge consists in developing a calculus of pseudodifferential
operators of the form (1.7) acting in the spaces H*%*((0,T) x R™). The
primary aim is both to admit operators L that depend on the spatial vari-
able x and to come closer to the interesting branching phenomena arising in
the propagation of singularities, as observed for the linear Cauchy problem,
e.g., in [1], [2], [21]. Tt is known that these branching phenomena crucially
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depend on the lower—order terms of the operator L, see, e.g., Qi Min—You’s
example. The pseudodifferential calculus to be developed has to be orga-
nized in part as a calculus of pseudodifferential operators on cuspidal wedges
for which in determining the ellipticity, besides the invertibility of usual
principal pseudodifferential symbol ag(L)(t, z,7,§), the invertibility of the
so—called principal edge symbol o (L)(z,&) living on T*R™ \ 0 and taking
values in a certain class of pseudodifferential operators on R, enters. In
[6], the Cauchy problem for operators L with x-dependent coefficients has
been treated in the spaces By. Elements of a calculus of pseudodifferential
operators on cuspidal wedges have been developed in [16], [19].

The paper is organized as follows. In Section 2, we introduce the Sobolev
spaces H*%*((0,T) x R™) for T > 0 and derive their basic properties.
Well-posedness of the linear Cauchy problem in these classes of Sobolev
spaces is shown in Section 3. In Section 4, we then prove that the spaces
H®%((0,T) xR™) are algebras under pointwise multiplication if s, § are suf-
ficiently large. This enables us to consider the semilinear Cauchy problem
(1.1) in Section 5, where we prove uniqueness and local in time existence
of the solution w in the same Sobolev space as v. We conclude with an
application to the theory of the propagation of mild singularities.

2 Edge Sobolev Spaces

Here we are concerned with the spaces H®%((0,7) x R™). Details on the
abstract approach to edge Sobolev spaces can be found, e.g., in [8], [18].

2.1 Weighted Sobolev Spaces on R

For s € N, § € R, the weighted Sobolev space H*%(R,) consists of all
ve L2 (Ry) such that

loc
t00lv e L*(Ry), Vj €N, j<s.

For general s, § € R, the space H*%(R,) is defined by interpolation and
duality. A norm on the space ’HS";(RJF) is given by

1/2
1 2 2
s =q— SIM d 2.1

where Mu(z) = [;°t* 'o(t)dt is the Mellin transform. Recall that
M: L*(Ry) — L*({z € C: Rez=1/2};(27i) 'dz) is an isometry and

M{(=td)v}(2) = zMuv(2),
M{t %v}(z) = Muv(z — 9).
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Furthermore, the space Cg,,
Let H*(Ry x R") = {v[p g
H*(R'™"): suppv C Ry x R"}.
Ezample 2.1. For s >0, H§(R;) = HOO(R}) N HSS(RY).

(R.) is dense in H*°(R).
v e H*(R™™)} and H{(Ry x R") = {v €

2.2 Abstract Edge Sobolev Spaces

A Hilbert space (E,{k,},~0) with a strongly continuous group action is
a Hilbert space E together with a strongly continuous group {r,},~o of
isomorphisms acting on E. In particular, k,k,, = kK, for v, v/ > 0 and
R1 = ldE'

For s € R, the abstract edge Sobolev space W?* (]R"; (E, {/-i,,},,>0)) consists
of all u € §'(R™; E) such that @ € L (R™; E) and the norm

1/2
ol () = Lo IO 0@} @2)

is finite. Here (&) = Fu(§) = [e ~i2&y(2) dx is the Fourier transform of u
and K(§) = K. W (R (E, {ﬁy}y>0)) equlpped with the norm (2.2) is a
Hilbert space.

Ezxample 2.2. For s > 0,

H*(Ry x R™) = W*(R™; (H*(Ry), {Ry }u=0)),

Hy(Ry x R™) = W*(R™; (H§(Ry), {Ku}us0)), (2.3)
where ,0(t) = vY/2v(vt), v > 0. See, e.g., [18].
In applications, the spaces E often consist of functions v = v(t) on R,
where characteristic features of such functions are expressed by prescribing
a different behaviour as ¢t — 40 and t — oo, respectively.
In the following, let w = w(t) be a cut-off function close to t = 0, i.e.,
w € C*®(Ry), suppw is bounded, and w(t) =1 for ¢ close to 0.

Lemma 2.3. Let s € R, Ey, E1 be Hilbert spaces of functions on Ry such
that

Hgomp(RJr) CE C HIS(JC(R+)7 1=0,1,

with continuous embeddings. Furthermore, the multiplication operators
Ey — Ey, uy — wug and E1 — E1, u;p — (1 —w)u; should be continu-
ous, where w is a cut—off function as above. Then the space

E = {(UUQ + (1 —w)u1: ug € Fg, up € El}
equipped with the norm
lulle = {llwullg, + 111 = w)ullz, }

1s a Hilbert space.

1/2
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Proof. By virtue of the open mapping theorem, the spaces {u, € E;:
suppu; C [ag,a1]} for i = 0,1 and {u € H*(R4): suppu C [ag,a1]} coin-
cide algebraically and topologically, for any 0 < ag < a1 < oo. In particular,
the space E is independent of the choice of the cut—off function w, up to the
equivalence of norms.

It remains to show completeness of the norm ||.||g. So let {u/}jen C E
be a sequence such that wu/ — wug in Ey and (1 — w)u/ — uy in Ey. Set
u=1ug+u; €E. Then w(l —w)u? — wuy in E; thus in H*(R,) and in Ej.
We obtain wu’/ = w?u! + w(1l — w)u! — wug + wuy = wu in Ey. Therefore,
wu =1ug and (1 —w)u = uy. O

We will also need the following result.

Lemma 2.4. Let (E, {k,}v>0), (E,{f,}v>0) be Hilbert spaces with strongly
continuous group actions. Further let a: R™ — L(E, E) be measurable with

7€) a@r(] gp,5) < CLOF, EER™ ac,
for some p € R and some constant C > 0. Then, for each s € R,
Op(a): 1% (an (E7 {K/V}V>O)> - WS?H(Rn; (Ev {’%V}V>O)>

continuously, where Op(a gch{a }

2.3 The Spaces H®%*R, x R")
Below we will use the group {/11(,6)},,>0,
O u(t) = P2y (L5, v >0,
B =1/(l++1). Here § € R is a parameter to be specified later on.

Lemma 2.5. Let s > 0 and the space E be as in Lemma 2.3 with £, =
HOO (R )RS3+ (R ). (Here the space Ey satisfying the conditions
of Lemma 2.3 is arbitrary otherwise.) Then, for each a > 0,

W (R (E, {r}) }v>0)) |(a,oo)an

{)\ 1/2+5 A(t),z): ve H*(Ry x Rn)}{(a,oo)XR”

holds algebraically and topologically, where ‘ means restriction of

00) XR™
functions u = u(t,x) from the corresponding functzon space to (a,00) x R™.
In particular,

He o Ry x R™) € WH(R™; (B, {69 },50)) € Hipo(Ry x R™)

comp

with continuous embeddings.
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Proof. If suppv C [a,o0) for v = v(t) and some a > 0, then supp(x, tv) C
[a,00) for each v > 1. We obtain

-1 -1
co |k, vllg0.00 (g yrps st 40400y < NIy 0lE
-1
<c |k, UHHOv‘”*(R+)OH3’SU*+1)+“*(R+)7 vzl
with certain constants 0 < ¢y < c¢; depending on a > 0 provided that
suppv C [a, 00).

Therefore, the norm of the space {u e Wws (R”; (E, {nl(fs)}wo)): suppu C
[a,00) x R™} is equivalent to

1/2
{/<€>23H;{(5) (5)7111(.’g)”%ew*(R+)OH5,S(1*+1)+51*(R+) d&}
_ { J© I8 O B o, de
1/2
o (GRELIO RO A
= {/<§>23Hﬁ(-,f)”%e,&l*(ﬂh) dg

1/2
+ [ 10Oy )

since ||k 0]l +ate g,y = V7 [0]lpsn0e 4040 g, ) for s € R, v > 0. (Use
the norm (2.1).) Thus the latter space coincides with the space

{u c H® (Rn; HO’&* (R+)) N HO (Rn; Hs,s(l*-i-l)-‘rél* (R+)) .
suppu C [a, 00) X R"}.

The space H*(R™;H%% (R, )) N HO(R™; H*sE+D+b (R, ) however, is
readily seen to be equal to the space {A(t)V/*Hv(A(t),z): v € H{(Ry x
Rn)}, since HO0 (R+) N HSSUst1)+6k (R+) — {)\(t)l/2+5v(A(t)): v €
H§(Ry)} in view of Example 2.1 and by employing (2.3) of Example 2.2. [

Lemma 2.6. Let the assumptions of the previous lemma be fulfilled.

(a) S(Ry x R™) is contained and dense in W*(R™; (E, {51(,5)},,>0)) provided
that S(R4.) is contained and dense in E.

(b) CFp(Ry x R™) is dense in W*(R"; (E, {H(y5)}u>0)) if and only if

comp

C . (R4) is dense in E.

comp

Proof. We prove (a); (b) is similar.
Since S(Ry) is dense in F and S(Ry x R") = S(R;)®,S(R"), we obtain
that the space

{F @ a((&)°t &)} ue SRy xRM (2.4)
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where a(t,£) = Fye{u(t,z)}, is dense in W?* (R (E,{xv}v>0)). But (2.4)
is the Schwartz space S(Ry x R™), as shown by elementary estimates. [

Definition 2.7. (a) For s > 0, § € R, the space H*%)(R,) is defined to
be the space E from Lemma 2.3 with Ey = H*(Ry) and E; = H%(R,) N
HesUA D)ol (R ) Analogously, H**(R,) is defined to be the space E
from Lemma 2.3 with Ey = Hj(R;) and E; as before.

(b) For s >0, § € R, we set

H*P ARy x R™) = WH (R (HYAR+), {7 }20))
Hy ARy x R™) = W (R™; (Hy MR, {58 150)).-

We summarize results obtained so far.

Proposition 2.8. Let s >0, § € R.
(a) Hipp (Ry xR™) € Hy"NRy x R™) C H**A(Ry xR") C H (R4 x R")

with continuous embeddings. The spaces in the middle coincide if and only
if s <1/2.

(b) S(Ry x R™) is dense in H*NR, x R™).

(¢) The space H" Ry x R™) is closed in H**»(Ry x R™) if and only if
s ¢ 1/24N. In this case, HS’&/\(RjL x R") is the closure of O, (R x R™)
in HSSMNR, x R™).

Lemma 2.9. {H‘S"55)‘(]RJr X R™): s > 0} for 6 € R forms an interpolation
scale with respect to the complex interpolation method.

Proof. Obviously, {HS"S;)‘(R+) t s > 0} forms an interpolation scale with
respect to the complex interpolation method. It remains to apply the functor

Ws(Rn; ('7 {51(16)}1/>0))- U

Proposition 2.10. Let s > 0, 6 € R. Then, for each j € N, j < s—1/2,
the map S(R4+ x R™") — S(R™), u— (d]u)(0,z), extends by continuity to a
map

70 HYOAN Ry x R™) — HPIHA0L=0/2(gn), (2.5)
Furthermore, the map

Hs,é;)\(R+ « Rn) - H }Isf,é’jﬁrﬁél*fﬁﬂ(Rn)7 U — {Tju}
j<s—1/2

j<s—1/2

18 surjective.

Proof. By Lemma 2.9, we may assume that s ¢ 1/2 + N. Then

S,0; tj . S$,05A (T
H*OMNR,) = { > w(t)ﬁdj: dj € C vg} & Hy(Ry),
j<s—1/2 '
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where w is a cut—off function as above. We get

HS,é;A(R+ % Rn)

By .
{2 r e P o)

j<s—1/2

d; € H*(R") w} ® HM Ry x R™)

- { Z Fim{w“g)ﬁt)éj(f)} @(t) ﬁ .

R
j<s—1/2 J:

¢ € Hs—ﬁj-l—ﬂél*—ﬁ/Q(Rn) Vj} ) Hg,é;)\(EJr x Rn)’

where @ = @(t) is another cut—off function such that w((¢€)Pt)@(t) = w((¢)Pt)
for all £ € R™. Now, for u € S(Ry x R") ¢ H*% R, x R") written in the
form
91)2,(€)) & v’
= > EL{e@ 06O} o) 5 + uolt,)

j<s—1/2

with uniquely determined coefficients ¢; € S(R™) c H*~Ai+#L—=6/2(Rn)
and ugp € Hg’é;)‘(EJr x R™), we obviously have

¢j(z) = (97u)(0,)
for all j € N, j < s —1/2. This yields the desired result. O

Proposition 2.11. For s > 0, § € R, we have continuity of the following
maps:

(a) Op: HSTLOANRy x R™) — HFBA(R, x R™);

(b) th: HSOMR, x R") — HSOH/ AR x R™) for 1 =0,1,...,1;

() Og;: HsHL MR, x R?) — HSSMNR, x R?) for 1 < j < n;

(d) @: HSSMNR, x R™) — HS%NR, x R™) for each ¢ = o(t) € S(Ry).
Here t' means the operator of multiplication with t'.  Similarly for
w. In particular, the differential operator L from (1.3) is continuous
from H*T25X((0,Ty) x R™) to H®t2M((0,Ty) x R™), where the space
H%((0,Tp) x R™) for s >0, § € R is defined in (2.6) below.

Proof. These are consequences of Lemma 2.4 and

(a) Oy : Hs—f—l,é;)\(RJr) —>H8’6+1;>‘(R ) (6+1)( ) 16 /{(6( ) < >3t;

(b) e HS76;)\(R+) —>H8’6+l/l*;)‘(R+) (6+l/l )( ) 1tl )( )

(c) i€ HTHOANRy) — HY ARy, k()7 1ig;nD) (€) = lfg,

(d) o((&)78t): H¥NRy) — H*%NR,) is uniformly bounded in ¢ € R”,
KO o(t)r ) (€) = w((€) 1)
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Another possibility in proving this lemma consists in utilizing the norm
(2.7). U

Remark 2.12. For s € N, the norm of the space H5 (R, x R") can be
shown to be equivalent to the norm

HUHHS’—SV\(RJrXR”)
1/2

ST D L A ey P

JHI<s

where kj; = max{0,—s + j + (. + 1){}. Without the additional term
l[wll zr3s (mmy, this norm has been used for treating degenerate elliptic op-
erators of type 4 in [13] .

2.4 The Spaces H*%*((0,T) x R™)
For T' > 0, we define

HS"S?)‘((O,T) x R™) = HS"S?)‘(]RJr X ]R")‘ (2.6)

(0,T)xR™
and equip this space, for the time being, with its infimum norm.
Lemma 2.13. For s € N, € R, and T > 0, the infimum norm of the space

H*%((0,T) x R™) is equivalent to the norm |-l z7s.:7 ((0,7) x ) » Where

2
e 0.y )
S

min{(¢) =P, T}
- (62 /0 A(€)P) 2B ke, €)|2 dt de

1=0 ' Re
S T

DS NCE MO ol drde. (27
=0 R? mln{<£>767T}

Proof. First of all, note that the norm [|.|| 5,001 (g, xrn) is given by

2
”UHHs,é;A(RerRn)

=3 [ @ [ lelotoe o a7 o) v
=0 3

+ s (€)*
2,

< [T =)@ ) e Parae
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min{(¢) 4, T}
- Z / ()25 / A(€)~0) 22 |gbat, €)[2 dt d

¥ Z / o [ Mt ba(t,€) d de,
min{(&)~5,T}

where w is a cut-off function as above. Thus, for each v € H5%* (R, x R"),
the norm (2.7) evaluated for u‘ (0.T)xRn is finite.

Conversely, suppose that, for some u, the norm (2.7) is finite. We choose a
measurable family {II¢: H*(0,T) — H*(R;): £ € R"} of extension opera-

o) =V for all v, such that

Z/ —20— QZ‘BZH 1)( )‘2 dt
+ Z / . A(t) 229w (t) | dt

tors, i.e., we have H§v|(

min{(¢ -8 T}
< c? Z i A€ )25 k(o) de
T
fory / M) 223l (1)|2 dt
= Jingte)-9.1}

with some constant C' > 0 independent of &, i.e., in the indicated norms of
the spaces H*(0,7) and H*(R, ), respectively, the operator norm of IT¢ does
not exceed C. To get rid of the possibly unrestricted growth of the factors
A(t)F242D) a5 t — oo, the extension operators II¢ are constructed in such a
way that suppv C (0,7%] for all v and some T} > T.

Now, letting U be defined by U(t,£) = Mea(t, &) = He(a(-,£))(t), we get
that U € H*% R, x R") is an extension of u, for

2
||U||Hs,5;>\(]R+><]Rn)
-8B

S €
~3 / @ [T e, o) v
+ Z / y2s =2 / ﬁ)\(t)’Ql’%\Bngﬁ(t,g)Pdtd£
min{(¢) =%, T}
< ¢? Z / gz / X)) -2 gka(t, € dt de

+ ¢ Z / Y2 / (&)~ |0t €)| dt dg
min{(§) =5, T}

= C? HUHHs,é;A((o,T)an)-
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This finishes the proof. U
Lemma 2.14. For s, s’ > 0,6, €R, and T > 0,

H92((0,T) x R") € H92((0,T) x R") (2.8)
if and only if

s>s, s+ B0l > s + Bdl,. (2.9)
In particular, for s > (l,, § € R,

H9A((0,T) x R™) € HS~HAOTLX (0, T) x R™).

Proof. Necessity. By the embeddings in Proposition 2.8 (a) and the trace
theorems in Proposition 2.10, (2.8) forces (2.9) to hold.

Sufficiency. Here we treat the case s, s’ € N. The general case is postponed
to the appendices. If (2.9) is fulfilled, then

IN

©TANE@) T < o@rTIA@ )T o<t
€N <@ AT (€)"

foral 0 <t < T, €R" 0<1<s,and some constant C = C(4,¢",T),

€77,
t<T,

IN

1 if § <o
C(5,8,T) = / s
( ) {T(55 )« otherwise.

This implies (2.8) with the embedding constant C(§,46’,T) for the norms
(2.7). O

The norm eventually used for the space H*%*((0,T) x R™) is ||.||s 5.7, where

s

1—
||U||§,5;T = ZT2 '

=0

m1n{< ) 57T}
()2 / A(€)™0)2= |kat, €)[2 dt de
]R? 0

S T
ey [ g | M2 01, ) dt .
1=0 Re min{(£)~#,T}

For later reference note that the embedding in (2.8) with constant 1 in the
case that s > s', s+ 30l, > s’ + 381, and § < §' remains valid for the norms
I]s.6:-
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3 The Linear Cauchy Problem

We start our considerations with the linear Cauchy problem

Lw(t,x) = g(t, ), w(0,z) = wo(x), w(0,z)=wi(x). (3.1)

The partial Fourier transform w(t,§) = Fy_cw(t,x) solves the following
Cauchy problem for a second-order O.D.E. with parameter &:

F(t, €) + (2A()[€le(t, €) — ico(t)) Dyw(t, €) (3.2)

— (A(®)?1EPalt, &) — iX (1) [E[b(t, €)) w(t, &) = —(t,€),
12)(075) = w0(£)7 wt(oag) = wl(é)a

where

n

a(t,§) = al-j(t)&—ij, b(t,g):—ij(t)ﬁ, (3.3)
€] = €]

Jj=1

~.

n ) 5_]
c(t,§) = ) _¢(t) o

Jj=1

It is clear that a unique solution @ to (3.2) exists. Then we may conclude
that a solution w to (3.1) exists and belongs to some Sobolev space. The
scope of this section is to prove well-posedness for the linear Cauchy problem
(3.1) in edge Sobolev spaces.
Introduce the number

1 [6(0, &) + ¢(0, £

Q0= P .97 F 0.9 34

and fix Ay = Qolu/(L, + 1) = BQoL,.

Theorem 3.1. Let s, Q € R, s > 1, Q > Qo. Further let wy € H*T4(R"),
wy € HSTAB(R™), and g € HS~H@HEA((0,T) xR™), where A = BQl,. Then
there is a solution w € H>((0,T) x R™) to (3.1). Moreover, the solution
w is unique in the space H*Q0A((0,T) x R™).

Remark 3.2. (a) The parameter Ay describes the loss of regularity. The
explicit representations of the solutions for special model operators in [15]
and [21] show that the statement of the Theorem becomes false if A < Aj.
(b) Under the assumption that wy € H*tA(R"), w; € H**4-5(R") for
some A > Ay we obtain w € Hs+A=40.QuiA((0, T) x R™) provided that g €
HsTA=A0=LQo+LA((0, T) x R™). If we merely have g € H*~L@TLA((0,T) x
R™) (note that H*tA=A0—LQo+LA((0 T) x R™) C HS~L@+LA((0,T) x R™)),
then we get the weaker conclusion w € H®@((0,T) x R") (note that
H5HA=40,Q0A((0, T) x R™) C H¥@A((0,T) x R™)).
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Let H®(R") = N,ep H5(R™), H>*X(0,T) x R") = Nser H**((0,T) x
R™), HoOM(0,T) x R™) = Nyep H*((0,T) x R™).

Corollary 3.3. (a) Assume that wy € H>®(R"™), w; € H®(R"), and g €
H*= 1o ((0,T) x R™) for some s > 1. Then w € H*>*((0,T) x R"). In
particular, w € H®((0,T) x R™) if g € H®M(0,T) x R™).

(b) Assume that wg = w; = 0 and g € Hg_l’QH;)‘([O,T) x R™) for some
s>1,Q>Qo. Thenwe HY? 0,T) x R").

From (a) we infer C* well-posedness for the linear Cauchy problem.

By interpolation, it suffices to prove Theorem 3.1 when s € N,. In this

case, Theorem 3.1 will follow by standard functional-analytic arguments if
the following a priori estimate is established.

Proposition 3.4. For each s € N,, QQ > Qq, there is a constant Cy =
Co(s, Q) with the property that
lwlls g
< Co (Ilwollgeraggm) + o1l grasa-sqgemy + T llgll—1 1,7
for all 0 <T <Ty. The constant Cy does not depend on T
For the proof, we introduce
v(t,§) = kD)1, 8), At &) = kT Tg(t,€) (3.5)

and split the (¢, &) space into two zones: the pseudodifferential zone Z,q and
the hyperbolic zone Zy,yp:

Zpa = {(t,€) € [0, To] x R": £(6)7 < 1},

Zhyp = {(tag) € [OaTO] x R™: t<€>ﬁ > 1}
Occasionally, we employ the equivalent description Zp,q = {(£,£): t < t¢},

Zhyp = {(t,€): t > t¢}, where te = (£)7P. In terms of the functions v and h
from (3.5), the borders of the two zones are given by ¢ = 1.

3.1 Estimates in Z,q4

We start the proof of Proposition 3.4 with an estimate in Z 4.

Lemma 3.5. Let w be the solution to (3.2) and v, h the functions defined
in (3.5). Then, for every s € Ny, there is a constant C' = C(s) such that

3 <T/2171H3§U(-7§)Hi?(o,T’) + T/2l‘(8£v)(T’7§)|2)

=0
< C({E)PF2 A4 ()2 + T7(€) P (€)]2)
s—1

£ OT Y TP ()2
1=0
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for all0 <T' < 1.

The proof is based on the following lemma the proof of which can be found
in the Appendix:

Lemma 3.6. Let ag = ag(t),...,am—1 = am—1(t) be smooth functions and
suppose that f = f(t) € HS~Y(0,Ty) for some s € Ny. Then the solution

y =y(t) to
Oy + am—1()0)" 'y + - +aot)y = f(t), 0<t<T<T, (3.6)
@y)(0) =yo;, j=0,...,m—1,

satisfies the estimate

s+m—2

S (T 0kl oy + T @) (T)) (3.7)
=0

m—1 s—1
<O Tyl + TS T |0k a0y
1=0 1=0

for every 0 < T < Ty, where the constant C depends only on Ty and

lajll s po,zup)-

Proof of Lemma 3.5. We apply (@) (€)~! to both sides of (3.2) and recall
that . (OFf(t)) = V*kﬁaf(/ﬁ(f)f(t)). Then we find

21} ﬁc *6 _Z'C *6 v
D3 <t,f>+(2x<t> Ele(te 1.9 ~ ian((© t,o) Dywlt,€)
- (A(t)zﬁa«arﬁt &) — i (0L piey 5 5)) o(t,)
BE ’ @ ) ol

= —(©)7"7Ph(t, ).

This equation shows the effect of the group action K(Q)(£ )~!: the parameter
¢ € R”™ has lost almost all of its influence, only terms of the form |£|/(£) or
(€)7P are still present.

We easily find that v(0,&) = (€)% 4y (€), v(0,€) = (£)738/2+ A%, (€).
An application of Lemma 3.6 concludes the proof. O

3.2 Estimates in Zy,

The goal of this subsection is to prove the following estimate.
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Lemma 3.7. Let @ be the solution to (3.2) and v, h be the functions defined
by (3.5). Then, for every s € Ny, there is a constant C' such that

e /

1=0 1
+ CTZZ (s— 1)/

provided that (€)PT > 1, i.e., (T,€) € Znyp.

©°r
MO tebue o) de < €T (O el)(1, )P

=0
1

‘A(t)_Q_l_l&ih(t, £) ‘2 dt

The proof will be given after we have found pointwise estimates of w(t, §).
We introduce the vector W (t,€) =t (A(t)|€|w(t, &), Dyi(t, €)) and obtain the
first—order system

W(t,€) = A, W (¢, ) + G(1,9),

MN(t)
B 0 1 _; () 0
A(tv 6) - <a(t, é-) —QC(t, €)> )\(t)‘g’ ()\’(t t,é) —Co(t)> )

where a(t, £), b(t, &), c(t, &) are given by (3.3) and G(¢t,&) = ¥(0, —g(t,&)). If
X(t,t',€) denotes the fundamental matrix, i.e.,

DX (t,t',6) = A(t, )X (t,1',€), X(t',1',&) =1,

then W (t,&) = X(t,t, &)Wt &) +1i [}, X (t,t",€)G(t",€)dt". This immedi-
ately gives estimates of |W (¢, &)| if estimates of X (¢,t’,&) have been found.
For the investigations of higher—order derivatives D!W (¢, &), we define

Wi(t,€) = (M0(E)IDIW (,€),  Gi(t,€) = (A\(t)(€)) ' DIG(t, &),

Xt = X0, (5]

and observe that

/

QMzC&ﬂ+U%

)m+@
:@wHﬂ>m+@+z<> A)(E) ™ (DI AW,

hence

Wi(t, &) = Xp 1 (¢, W (', € /Xl+1 (t,t", )G (t", &) dt". (3.8)
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Lemma 3.8. There are some (large) constants ¢,C > 0 such that

At)
NG

Qo+1
| Xt 9| gC( ) , cte <t <t <y,

holds for all £ € R™, where Qo < @Q is given by (3.4).
Proof. See [7]. O
From this and || X (¢,t',£)]| < exp(ft'f |A(t",€)|| dt”) we obtain || X (t,t',&)]| <

C(A®)/A())@H for arbitrary te <t <t < T.
Next we derive the following estimate:

Lemma 3.9. For (t,§) € Zyy, and each | € N,

‘Wl < Z <’W (te, )| / ‘G ) . (3.9)
te

Proof. This is true for [ = 0, compare (3.8). Now let [ > 1 and assume (3.9)
for I — 1. From (3.8) and [ > 1 it follows

NORN CAONT A
il < () meeoie [ (5g) dora

For the estimate of the integral, we recall that

/ —-m m / / —-m / /—m )\I t/
(E)E) ™ IDPAE. Q) < CORYEN ™A™ < O3
Then we conclude that
<>%m@@k@»@)%wmgu+c/' ylGu(r ©)| dt
+CZ/A W)
The induction assumption gives
N () [Wiem(t',€)| ) = M@Qé 1G]
NORRIGIE E%( Z; e ")
Partial integration shows (3.9). O

Let us formulate the statement of Lemma 3.9 in another way:
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Lemma 3.10. If s € N, { € R" and t > t¢, then

S

YOOV, €)] < C Y (€)M (te) AT (9y@) ke, €))
=0

=0

s—1 t
oY (g / ()@ 1Akt €)'
=0 3

Proof of Lemma 3.7. From the identities (9t(/-$,(,5)f(t)) = PxY) (O:f(t)) and
AR F(t) = v=oBl gD (A1) £(¢)) we obtain

M)~ f (1) = v ARD (M) f (1))
Hence it follows that

S S

DO TN te) T (Ofd) (1, €) = Y (€)TP(04v)(1,6))-

=0 =0

Utilizing the identity )\(t)_lﬁé(/ﬁ,(f)f(t)) = Vlﬁ,(,é)()\(t)_lﬁéf(t)) and squaring
the inequality of Lemma 3.10, we obtain

SO2A 02 K@M ot o) < 3> k), o)
=0

=0
s—1 t 9
+C ) (%D / (W) 2D QA (€| ar
1=0 te

Integrating over (t¢,T") and employing

2 (€)°t
dt’ = / M) 2R f ()2 at’
1

yield the assertion of Lemma 3.7. O

()22 | @ (&) f(t)

te

3.3 Estimates in Edge Sobolev Spaces

In this part, we patch the inequalities of the Lemmas 3.5 and 3.7 together
in order to prove Proposition 3.4.

Proof of Proposition 5.4. The norm [w|, o.r can be written in the equiva-
lent form

min B
20—1 28 (L&) [
[|w]? SOT ™ E T n Oyv(t,§) dtd§

+JZ;T2l1 /2 /mln £)5T) R 5)‘ dt dt.
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A similar representation holds for ||g|[,_; o, .- We set 7" = min(1, (6)PT)
and make use of Lemma 3.5. Then it follows that

2
T2 oo, ¢) o

2[—-1
<C <%> (&) P2 A g (€) 2 + T (€) 73024y (¢) )

-1
4 2r—21 — — r

+ Ty T ) ) ||ath('7€)||%2(0,T’)
r=0

for all 1 <[ < 's. Consequently,

2

I2(0,77)

ST o
=0

S 2[—1
< C((& i ()7 + T™(€) 4 |in (1) Y @)
=0

s—1 201
r— - r L
LTS TN 0 o, o S <F>

r=0 I=r+1

< O, ((©) a0 (©)1° + T ()24 an (6) ) (€)°
s—1

+ O T2 Y T2 ) 20T )72 o 10y -
r=0

By Lemma 3.7, we obtain

20—1 <£>BT LAl 2 2[ : 2
72 [T e aue )| de < 01 320 350 1,9)

r=0
(3.10)
= ©°r 2
+CT?) T2 / IA) "9 O R(t, €| dt
r=0 1
forall1 <[ <s, and
| [eT ) 1 )
T / A Cut, )] di < C3 (0|05 )(1,6) (3.11)

&°T

n CT<§)2/ IA(H) "9 h(t, €)

1
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Summing up (3.10) for  =1,...,s and (3.11) yields

s ©°r
S / ‘A(t)—Q—lagv(t,g)f dt
=1 1
< On, ST 00 (1,6
r=0
sl ©rr
+On PTG [T A0 ropa )

r=0 1

Employing this technique (of picking one term and summing up) a third
time, we deduce from Lemma 3.5 that

s

D TEN@]0) (L. 6P < Ony ((©* o (€)1 + T(€) 7>+ oy (6) )

r=1
s—1

+ O, T3y T =1 20T )30,y -
r=0

Finally, Lemma 3.5 shows that

1

STEP1E70) (1, €)1 < O o (€)]? + (&)~ 2+ wy (£))

r=0
+CT(E) 2 W 201 »

where we have used (¢£)™% < T. Taking into account all estimates obtained

+ /WT ‘A(t)—Q—laiv(t,g)‘th>

T/

so far, we find

S

> (ot

I2(0,T"
Py 0,77

< CU&* o (&) + (&) i (£)1%)

s—1
+ Ty T ) 2|0k, €) i
=0

I?(0,77)
s—1
+ CT2 Z T2171<£>72 /
=0

Multiplying by (£)2* and integrating the resulting expressions over R™ with
respect to £ completes the proof. O

(rr 2
(A(f)*Qflflagh(t,g) dt.

/

4 The Algebra Property

In this section, we show first that edge Sobolev spaces H*%*((0,T) x R™)
are algebras under certain conditions on s and §. Then we easily conclude
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that superposition operators which are formed by entire functions map these
edge Sobolev spaces into themselves.

Proposition 4.1. Assume that s + 0 > 0. We suppose that s € N and

min{s, s + $6l,} > (n+2)/2. Then H>%*((0,T) x R") is an algebra under

pointwise multiplication for any 0 < T < Ty. In other words, we have
”uvHs,zS;T <C HuHs,é;T HUHs,é;T

for u,v € H>%(0,T) x R™). Moreover, the constant C' is independent of

0<T<Ty.

Corollary 4.2. Let f = f(u) be an entire function with f(0) = 0, i.e.,
flu) = Z;’;l fiw for all u € R. Then, under the assumptions of Propo-
sition 4.1, there is, for each R > 0, a constant C1(R) with the property
that

Hf(u)Hs,é;T < Cl(R) Hu”s,(S;T7
Hf(u) - f(v)”s,(S;T < Cl(R) HU - UHs,é;T
provided that u,v € H*%((0,T) x R") and [ully 5.0 < R, [[vllg 5.0 < R

The proof is split into several lemmas and makes heavily use of so—called
weight functions.

Definition 4.3. A function a: R — [c,00) (¢ > 0) is called a weight

function if a is a continuous, monotonically increasing function of |£| with
the property that «(2¢) < Ca(€) holds for all £ € R™.

Lemma 4.4. Suppose that o, 3,7 are weight functions with
C2 = sup Lg)2d77 < 0. (4.1)
O cern Jry B()*y(€ — 1)
If u,v are functions with B(€)a(¢) € L2(R™) and v(£)0(¢) € IP(R™), then
a(é)(uw)(§) € Z(R") and
10(&) (uo) ()| 2 my < CollBE)AE) r2mmy 1V(E)VE] 2R -

Proof. Choose some arbitrary w € I?(R"). By the Cauchy-Schwarz inequal-
ity, we have

[ a@wrieie ds

€

W(E)12 a(§)? v
= {/R o) ry B(0)?7(€ = n)? dndﬁ}

n
13

1/2
X{ B(n)Qlﬁ(n)IZ/ v(f—n)zl’@(é—n)\Qdédn}
Ry Ry
< Co ||| 2 gy 1BE)AE| p2rmy Y (E)D(E 12 () -

Applying the Riesz representation theorem concludes the proof. O
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The following lemma gives a sufficient condition for (4.1).

Lemma 4.5. Suppose that o, 3,7 are weight functions. Furthermore, as-
sume that

+

s [ 2@ dn  a(§)’ dn -
;eRp" (ﬁ(ﬁ)Q mi<2le] Y2 v(€)? /n|g2|g| 5(77)2> <
Then (4.1) holds.

Proof. For each § € R", we split R} into three parts:

A(€) = {n: Inl = 2]},
B(&) = {n: [nl < 2[¢],1€ —nl < Inl},
C&) = {n: Inl < 2/¢[,1€ —nl > [nl}.

Case 1: n € A(£). We have [{—n| = |n|/2, hence y(§—n) = v(n/2) = Cy(n).
From this and «(§) < a(n), it follows that

a(€)?
/A(g) Bm)2~(§ —n)? dn < ¢

Case 2: n € B(§). It holds [§] < [ —n| + [n| < 2[n|, hence B(n) = B(£/2) =
CB(£). Then we obtain

a(€)? a(€)? d¢
/B(g) B(n)?v(§ —n)? dn < 05(5)2 /<§2|§| 7(¢)? =

Case 3: n € C(&). In this case, we have [¢| < |£ —n| + |n| < 2| — 7|,
consequently, v(§ —n) > v(£/2) > C~(&) which implies

a(6)? a(6)? iy
/C@ BP(e —m2 = e /|ng2|5| Bz = ¢

The proof is complete. O

In a certain case, a more precise estimate than that of Lemma 4.4 is required:

Lemma 4.6. Let u,v € I*(R") N [>°(R") be functions with a(£)a(€) €
Z(R™), a(€)6(€) € I2(R™), where a is a weight function. If

o — —alé — 2 2
/R (o(8) a(g;)za@(_'fmgﬁ M gy < oo, (4.2)

C2 = sup

£ER™ JR7
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then
() (o) T 2y < N1w@)] oo (e A(E) O 12y
+ Co [ €)a(€) /()| 12wy U E)O(E) | 12 emy
+ (@)l o gy U(E)AUE) | 22mm -
Proof. We can decompose the term «(§)(uv)7(§) as

[ @it - man= [ atmacee - mar
+ [ ate—mtmae —nan
+ [ (@ -~ ato) ~ ate )it —n i

n

From [e a(n)i(n)o(€—n) dn = Fog(v(z) Fep (a(€)(€)))(€) and Planche-

rel’s theorem we get

< No(@) | oo meny (€ AE] 12 emy -
I2(Rn)

[ atmatmit —nan

Now choose some arbitrary w € I?(R"). By the Cauchy-Schwarz inequality,
we have

// ) — aln) — (€ — ) am)b(E — n) dyi(E) de

1/2
ey [ (@) —am) —ale —n)* ) }
< [ (&) 2 dn dg
{Rg / . omPale )P !

a(n)? 1/2
x {/n )2 Iﬂ(n)lz/na(é —)2lo(E — )2 dédn}

13

< Co [|@]] 2y [1(€)(€) /()N 12 ey [1(€)D(E) / (€D 12 (emy -
Applying the Riesz representation theorem concludes the proof. O

Now we present a sufficient condition for (4.2).

Lemma 4.7. Suppose that o = «(§) is a weight function with

a(§) 1
() — am)] < ClE -l © vI€ —nl < 5I€l; (4.3)
(n)?
/R% ()2 dn < oo. (4.4)

Then (4.2) holds.
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Proof. For each £ € R", we split R}y into four parts:

A(§) = {n: Inl = 2(¢[},
B(&) = {n: Inl <2[¢|,1§ —nl < Inl/2},
C&) = {n: Inl <2, 1€ —nl > 2|nl},

D(&) = {n: Inl < 2[¢],|nl/2 < |§ —nl < 2nl}.
For the sake of brevity, we introduce the notation
(a(§) = an) — (€ =m)*(m)?*
a(n)?a(§ —n)?
Case 1: n € A(§). We have |£ —n| < 3|n|/2 and |n| < 2|¢ — 1|, hence

a(n)?(& —n)?
((§) = a(n) — a(é = n))* < Ca(n)? < CW

6(&,m) =

which implies 6(¢,7) < (€ —n)?/a(é —n)*.
Case 2: n € B(£). By (4.3) we deduce that

v (
(&) — a(n) — a§ —n)* < 2(a(§) — a(n))? + 2a(& —n)?
o

2
< C{E—n)? (7;;)2 +2a(€ — ),

and, consequently, 4(,1) < C(§ —n)?/a(§ —n)* + C(n)*/a(n)*.
Case 3: n € C(£). Applying (4.3) again, we get
(@(€) = a(n) — a(€ =) < 2(a(é) — (€ —n))* + 2a(n)?
g€ — 1) 2 (€ —n)?
(€ —m? (m)?

N2
< Calg —n)* + CalyP 2

Then we obtain 6(&,7) < C(n)?/a(n)? + C{€ —n)?/a(é — ).
Case 4: n € D(€). Here we have |¢| < | —n| + |n| < 3|n|, hence

<C(n)

+ Ca(n)

(& —n)?
(m?

Proceeding as in Case 1 we find §(¢,7) < C{€ —n)2/a(€ —n).
From (4.4) we obtain [p, 6(&,1)dn < C uniformly in &. O
n

(a(§) — al§ =) — a(n)? < Ca(n)® < Ca(n)?

Definition 4.8. Let {0; = ¥;(t,£)};_, be a family of weight functions de-
pending on the parameter ¢ € [0,7y]. Then we define the norm

s T
iz =1 [ o odtac o, e
1=0 0

2
d
I?(Rm)
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Lemma 4.9. Assume that the family of weight functions {o,...,0s} sat-
isfies the following conditions:

(n)?
o] /R dolt, 2" = (45)
Fe>0: ()M <00(,€) V(tE€) € [0,Ty] x R, (4.6)
‘atﬁlJrl(t?g)‘ + 19[+1(t,§) < Cﬂl(u&): [<s-— 17 v(t7€)7 (48)
)
9009 - do(t )| < Cle -GS e, Vil <lel/2 @49
191(75,77)2
o [ T < 2R (410
0l(t7€)2 dn l k
[0,;1]131&? Uik (t,6)? /In§2|§| Iry1(t,m)? = SRR (4.1)

Then there is a constant Cy (independent of T') such that

lwvlls < Collulls r llvlls 7 -

Proof. Obviously,

2

2([0,T],I2(R™))

s l
Juvll? 7 < €30 ST |ou(e, €)((0Fw) (@) o)) T €)

=0 k=0

First we consider the terms with [ > 1. Without loss of generality we may
assume that k + 1 <[ (otherwise we change the roles of k and [ — k in the
sequel). Due to (4.10), (4.11) we may apply the Lemmas 4.4 and 4.5 in the
following way:

2

T
T21—1/0 Hﬂl(t,5)((3}5@(@%%))%,5)

LZ(R™)

(.00t 6)||

<cor*t / TU%H@,&)W%O 2 |
0 I2(R")

LZ(R™)

2 2

< oT?* Hﬂk+1afau T2(=k)-1 Hﬂl_kag—k@

2([0,T),I?(R)) I2(0,T),I2(R™))

We have the embedding W.}(0,T) C L>°(0,T). More precisely,

||9||Loo(o,T) <crt ||9||L2(0,T) +CT ”atg||L2(o,T) : (4.12)
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Then (4.8) yields

™ HﬂkJrlafﬁHiw([O,T],LQ(]R")) <ot Hﬂk“afﬁ ;([O,T],LQ(]R"))

2
21 -
+C H(aﬁk“)at Nz o112y

2
+ O+ Hﬂmaf“a

(071,12 (R"))
< Cull -

Now it remains to consider the term with [ = 0. According to the Lemmas
4.6 and 4.7, we have

T |00 (t, &) (uo) T ) 172 p0.17.2 )
< T s )7 (0.7 xme) 19081 72 0,77, 22 Ry
+ CT ™ ([90(t, €)(t, €) /() | 2o (0,11, 22 1908117210, 77, 2 (R
+ T [u(t, @) e o 1)) 1908 20,17, 2287
The embedding H"™/?T¢(R™) C L®(R"), an argument similar to that of
(4.12) and (4.6), (4.8) imply

2
Jutt, ) e o.zymny < CT | (€02 ui(t, €)

2([0,T],I2(R™))

+OT7! (@2t €)

2
L2([0,T],I2(R™))
<C (T 1910vl|72 (0 11,12y + T H190ﬁ||%2([o,T],L2(R"))> :
Exploiting (4.7) we deduce in a similar manner that
190 (t, )a(t, ) /(€N 2 (jo.17.12 2n)
< CT |00 (t, ©)a(t, €) /(I T20.17.22m))
+ CT'[|(0pdo(t, §))a(t, £)/{E) |\%2([0,T],L2(Rn))
+ CT |[9o(t, §)dra(t, £)/(€) H%?([O,T],LQ(R"))
<C (T 191041122 10 1y 2 nyy + T WOW%?(@,T],L?(R”))) :
The proof is complete. O

Proof of Proposition 4.1. The norm ||.|, 5.7 of the space H*%*((0,T) x R™)
is equivalent to the norm |||, 7~ from Definition 4.8, where

O ro <t <t = ()P,
9(t,€) = {<§>8_l)\(t)_5_l te<t<T.
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It is easy to check that these functions are continuous, increasing in |{| (since
s+ 6 > 0) and that 9;(¢,28) < CV,(t,§) for all (¢,€) and all . Hence they
are weight functions in the sense of Definition 4.3. The proof is complete
provided we show that 9y, ..., satisfy the conditions (4.5)—(4.11).

If 6 > 0, then

(n)?
R7 190(157 77)2

since s > (n+2)/2. If § <0, then s > (n+2)/2 + 3|01, hence

<?7>2 / —2542 25
dn < n STEN(t dn < oo.
R} 190(15777)2 B Z;< > ( 77) !

dn < \(T) / ()24 dy < oo,

This proves (4.5), and (4.6) can be considered similarly. We observe that
Yo(t, ) _ Vi41(t,€) 04 (t, €| -1
< AT)(&), <te <C, <Ct.",
nwy =M Tg =t g =

which yield (4.7) and (4.8). Now we prove (4.9). Fix t,£,n. The derivative
of the function ¥g(t,& + o(n —&)): [0,1] — R4 has at most two jumps, say
at o1, 02 with 0 < o1 < g2 < 1. We write

190(@&) - 790(15777) = (790(157{) - 790(@& + 01(77 - 5)))
+ (Wo(t, € + 01(n = &) — Jo(t, § + 02(n = €)))
+ (Do(t, € + 02(n — £)) — Jo(t, )

and apply Hadamard’s formula to each term on the right. We obtain, e.g.,

[Po(t,€) = Do(t, & + 1(n — §))| < /Ogl [Vdo(t,& + o(n — &) - | —nlde

o 190 t €+ o(n—¢)) Yo(t,€)
C d — C—=—¢ -
<o "Rt B g e - < ¢S e~
since | — | < ]f\/2. Then (4.9) follows. By (4.7) we deduce that

Ou(t, m) _ 1 _ Cw
ﬂlfk(tﬂ?)ﬂkﬂ(tﬂ?) 191(t777) o 190(15,77) .

Then (4.10) follows from (4.5) immediately. It remains to show (4.11).
Suppose that (¢,2£) € Z,q. Then we have

M/ g (<§>)\(t§))—2"“/ Alty) D
Dik(8:€)2 Jinj<ig) O (t)? mi<2lel (m)2E—FD
< O(g) / () =2k HBOHRA L)1 g
Inl<2l¢]

< C<€>—2k6—2(s—k—1+5(5+k+1)l*)+n+a _ C<§>_25+n+2—2ﬂ(5+1)l*+5‘
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Due to our assumptions, the last exponent is negative. Now assume that
(t,€) € Znyp, which is equivalent to t=(+1) < (€). Then a short calculation
reveals

79l(t7 €)2 / d77
|

U1k (t,€)? Jiy<ale) Fr+1(t,m)?
2(5+k+1)
= (e | M) 2 d

ml<t—stn (n)2=k=D)

B )\(t)2(6+k+1) d77
NI MO0 di
(EA[®)) (Lt < < 2] (77>2(S_k_1)

< C(<§>)\(t))2k/ <n>*2(87k71+6(6+k+1)l*)+n71d|77|
| <t = (st
+C(€) ()Y () ~2s—k=Dtn=1 g
Inl<2[¢]

< C<€>f2k)\(t)f2kt7(l*+1)(72(sfkf1+,8(6+k+1)l*)+n+s)

+ C)\(t)2(5+1) <£>f2s+n+2+€
= C((E)A(1)) T2 A () 2200 L= 1 O, (1,€) 72 (€)™
<C,

where we have used (4.6). The remaining case of (¢,£) € Zpq, (t,28) € Zpyp
can be considered similarly. The proof is complete. U

5 The Semilinear Cauchy Problem

First we prove a local in time well-posedness result for the semilinear Cauchy
problem.

Theorem 5.1. Let s € N and assume that min{s, s + Qol.} > (n+2)/2,
where Qo be the number from (3.4). Let Q > Qo and A = BQl.. Then,
for ug € HFAR™), up € HT4=B(R"), there is a number T > 0 with the
property that a solution u € H> (0, T) x R™) to the Cauchy problem (1.1)
exists. This solution u is unique in the space H>Q0 ((0,T) x R™).

Proof. Uniqueness follows from the basic energy estimate and the local Lip-
schitz continuity of the map H*@((0,T) x R?) — HSPA((0,T) x R"),
u +— f(u), see Proposition 3.4 and Corollary 4.2. To get existence, let

R = 2Co (||[uol| grs+amny + llurll e+ a-sgny + 1)
and choose 0 < T < T} such that

Co (lluoll gro+a@ny + llutll gora-s@ny + TC1(R)R) < R,
TCoCr(R) <1/2,
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where Cy and C1(R) are the constants from Proposition 3.4 and Corol-
lary 4.2. Recall that the constant of the embedding H*%*((0,T) x R") C
Hs=1LO+EA((0,T) x R™) is (uniformly in 0 < T' < Tp) bounded by 1. Fix
the closed ball

B = {uec HY¥(0,T) xR"): |lull, o < R}

and observe that the map A: w — u, Lu = f(w), u(0,z) = ug(x), ut(0,z) =
ui(x) maps B into itself, according to Proposition 3.4 and Corollary 4.2.
Moreover,
1
/ /
HA(U)) B A('U) )HS,Q;T < 5 HU) -w HS,Q;T

such that Banach’s fixed point theorem applies to yield the existence of a
unique fixed point u € B of A which is then a solution to (1.1). O

Remark 5.2. The same proof yields local in time well-posedness in
H>®@0A((0,T) x R™) for semilinear equations of the form

Lu = f(u, 0, t" Oy u, ..., 150y, u),
where f is an entire function on R"*2 satisfying f(0,...,0) = 0 provided
that s —1 > (n+2)/2.
Eventually we state a result concerning the propagation of mild singularities.
Theorem 5.3. Let s satisfy the assumptions of Theorem 5.1. Assume
ug € H3HPRL(R"), vy € HSTHQL=B(R™), where Qg is given by (3.4).

Then the unique solutions u,v € H*Q0A(0,T) x R™) to (1.1) and (1.2)
satisfy

u—v e HTPQA(0,T) x RM).

Proof. Corollary 4.2 implies f(u) € H*20*((0,T) x R"). From Lemma 2.14
we deduce that f(u) € H*~HAQoTLA((0, T) x R™). The function w(t,z) =
(u—v)(t,x) solves Lw = f(u) and has vanishing initial data. An application
of Theorem 3.1 concludes the proof. O

Ezample 5.4. Consider Qi Min—You’s operator L from (1.8). Then [, = 1,
B =1/2, and Qg = 2m. Theorems 3.1, 5.1, and 5.3 state that the solutions
u, v to (1.1), (1.2) satisfy

u, ve H2AN(0,T) xR),  u—wve HHT/22mA(0,T) x R)
provided that ug € H**™(R), u; € H*t™ 1/2(R). Proposition 2.8 then
implies

u, v € Hy ((0,T) xR),  u—ve HV2((0,T) x R).

We find that the strongest singularities of w coincide with the singularities
of v. The latter can be looked up in (1.9) in case u; = 0.
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A Appendix

A.1 End of Proof of Lemma 2.14

The proof that (2.8) is implied by (2.9) is divided into several lemmas.
For s > 0, § € R, we introduce the spaces

Eo(s,6,T) = W*(R"; {H*(R+), {s{ }>0})
El (5’ 67 T)
— WS (Rn’ {HO’&* (R+) N HS,S(Z*+1)+6l* (R+), {/i,(,é) }V)O}) |(

| (0,T)xR™"

0,T)xRn*

Lemma A.1. Let s > 0,0 € R, and 0 < a1 < ag < T. Then, for some
function u on (0,T) x R™, we have u € H>**((0,T) x R™) if and only if

u(t, ) = uo(t, ) + ui (£, ),
where u; € Ey(s,0,T), i = 0,1, and

supp o C {(t,€): 1(€)” < ao}, suppiy C{(t,€): 1(6)” > ar}.
Proof. Tt suffices to set

do(t, &) = w(t(€))a(t,€), ai(t,€) = (1 —w(t(E)))a(t, &),

where w € C*°([0,T],R) satisfies w(t) =1 for 0 < ¢t < a; and w(t) = 0 for
ag <t <T. O

Next we provide a characterization of the spaces E;(s,d,T), i =0, 1.
Lemma A.2. For s> 0,0 €R, and T >0,
Eo(s,8,T) = H*P(R", H(0,T)) N HP Tk (R", H*(0,T)).

Proof. This follows from a direct manipulation using properties like
HE (R, ) = HYO(RL)NHS*(R, ) in Example 2.1 and H/@VUHHS,W*H)ML*(R+) =
VY [vllggs et vor (m,y for s € R, v > 0. O

Lemma A.3. For s> 0,0 € R, and T >0,

Eq(s,0,T)
_Hs (Rn’HO,le* (RJr)‘(o,T)) A O (Rn’Hs,s(l*+1)+5l* (R+)|(0,T))'
Proof. This has been shown in the proof of Lemma 2.5. O
Lemma A.4. Let s, s’ >0, §, 0’ € R satisfy (2.9). Then
Eo(s,6,T) C Eo(s',8',T), FEi(s,6,T)C E1(s',8,T) (A1)

with continuous embeddings.
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Proof. (a) For Ey(s,0,T) C Ey(s’,0’,T), note that
H 00k (R™ HO(0,T)) 0 HPCHO (R, H#(0,T))
C Hsfﬁs’qtﬁél* (Rn, Hs’ (0’ T)) C Hﬁ(suré’)l* (Rn’ HS/(O, T))
by interpolation and s — 8s’ + 35l > (s’ + 0')ls.
(b) For E1(s,6,T) C Eq1(s',¢',T), note that

HO (Rn, HS,S(Z*+1)+5Z* (R+)| ) g HO (Rn7 H5/73/(l*+1)+5’l* (R+)|

(0,7) (O,T))

because of s + (30l, > s’ + 38'l, and
s (Rn’ HO’&* (R+) ‘ (07T)) N HO (Rn7 Hs,s(l*+1)+5l* (R
C Hs/ (Rn Hsfs’,(S*s’)(l*+1)+5l* (RJr)‘
- HS (Rn HO(Sl* R+

+) ‘ (O,T))
(O,T))
‘(o T) )

by interpolation and (s—s")(l.+1)+0l, > §'l,. Also note that, for the spaces
HS"S(RJF)‘(O ) interpolation jointly in s, § is possible, as seen by (2.1) and
the three lines theorem of complex interpolation theory. O

In view of Lemma A.1, (A.1) completes the proof of Lemma 2.14.

A.2 Proof of Lemma 3.6

We introduce the vectors
Y =Yy, Towy,..., T" 0" Yy), F="%0,...,0,T" 1))

and obtain the first order system 0,Y (t) = A(t)Y (t) + F(t), where A = A(t)
is some m X m matrix with

IA@)] < Co(T™ + max T i (1)),

HafA(t)H < Cymax [T Jofa;(1)], k> 1

If X = X(t,t') denotes the fundamental matrix, ;X (¢t,t") = A(t) X (¢,t),
X, t')=1,thenY(t) = X(¢ 0)+ fo X (t,#)F(t') dt'. Tt is well-known
that | X (¢,t)] < exp(ftf | A( t”)H dt”) < C, where C does not depend on T,
since 0 <t/ <t <T < Ty. We differentiate our first-order system r times
and obtain (9; — A(t))(0;Y) = F,(t) with some F, containing derivatives of
Y up to the order r — 1. Then we find that

oIy (1) < C|(@Y) y+cz/ LY (¢ dt’ +c/ Or ()| dt'.
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Multiplying with 7" and summing over r =0,...,s — 1 gives
s—1 s—1
D TOY () < CY TT|(07Y)(0)]
r=0 r=0
s—2
+CZTT/ O] F |dt’+CTOZT’"+1/ 07 Y ()] dt’.
r=0

Then Gronwall’s inequality leads to

s—1 t
> T|orY( ]<CZT7"< [Ca% )\+/ ya;F(t')ydt'>.
r=0 0

Taking squares, applying the Cauchy—Schwarz inequality and integrating
over (0,7) give

s—1

ST Y o
r—0
s—1 s—1
<Y T YO + 0T T 9 Fll% o1 -
r=0 r=0

Now it remains to estimate the values |(0]Y)(0)|. Repeated application of
(3.6) shows

m—1 r
@) O] < C Yyl +C D 1@LNO)], 7> 0.
=0 =0

From this and HQH%OO(O,T) <cor! HQH%Q(O,T) + CTH&ggHiz(QT) we deduce
that

s—1 s—1m—1
S TUGY)IO0)F =D D T (97 y)(0))
r=0 r=0 [=0

m—1 5s—2
< Cry 3 Ty P + Cry 3 T2 (3L 1) (0)
=0 1=0
m—1 ‘ s—1 )
<C ZT2j|y0j|2+CZTz(l+m)_1HaifH[?((),T)‘
=0 1=0

This proves one part of (3.7); the other part can be proved similarly.
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