Definable Valuations on Dependent Fields

Katharina Dupont

University of Konstanz
Department of Mathematics

Question

When does a dependent (in $\mathcal{L}_{\text {Ring }}$) field admit a non-trivial definable valuation (in $\mathcal{L}_{\text {Ring }}$, possibly with parameters)?

Definition

Let Γ be an ordered abelian group and let ∞ a symbol such that for all $\gamma \in \Gamma \infty>\gamma$ and $\infty=\infty+\infty=\gamma+\infty=\infty+\gamma$. A valuation v on a field K is a surjective map

$$
v: K \rightarrow \Gamma \cup\{\infty\}
$$

such that for all $x, y \in K$
(i) $v(x)=\infty \Rightarrow x=0$
(ii) $v(x y)=v(x)+v(y)$
(iii) $v(x+y) \geq \min \{v(x), v(y)\}$

We call v trivial if for all $x \neq 0 v(x)=0$.

Definition

We call a subring \mathcal{O} of a field K valuation ring if for every $x \in K \backslash\{0\} x \in \mathcal{O}$ or $x^{-1} \in \mathcal{O}$.
We say that \mathcal{O} is non-trivial if $\mathcal{O} \neq K$.

Definition and Lemma

Let v be a valuation on a field K.
Then $\mathcal{O}_{v}:=\{x \in K \mid v(x) \geq 0\}$ is a valuation ring on K.
$\{$ valuations on $K\} / \sim \quad \longleftrightarrow \quad\{$ valuation rings on K \}

Definition and Lemma

Every valuation ring \mathcal{O} has exactly one maximal ideal \mathcal{M}. We call $\bar{K}:=\mathcal{O} / \mathcal{M}$ the residue field of \mathcal{O}.

Question

When does a field admit a non-trivial valuation?

Answer

A field admits a non-trivial valuation if and only if it is no algebraic extension of a finite field.

From now on if not stated otherwise no fields are algebraic extension of finite fields.

Theorem (Chevalley)

Let (K, \mathcal{O}) be a valued field. Let L / K be an arbitrary field extension.
Then there exists an extension of \mathcal{O} to L i.e. there exists a valuation ring \mathcal{O}^{\prime} on L such that $\mathcal{O}^{\prime} \cap K=\mathcal{O}$.

Definition

A valuation (ring) on a field K is called henselian if it extends uniquely to the algebraic closure of K.

Definition

Let $\mathcal{L}_{\text {Ring }}=(0,1 ;+, \cdot,-)$ the language of rings.
We call a valuation ring \mathcal{O} on a field K definable if there exists an $\mathcal{L}_{\text {Ring }}(K)$-formula φ in one variable such that $\mathcal{O}=\{x \in K \mid \varphi(x)\}$.

Example

Let $\left(\mathbb{Q}_{p}, \mathcal{O}_{p}\right)$ be the field of p-adic numbers.
Then

$$
\mathcal{O}_{p}=\left\{x \in \mathbb{Q}_{p} \mid \exists y y^{2}-y=p x^{2}\right\}
$$

Question

When does a field admit a non-trivial definable valuation?

henselian valued fields
p-henselian valued fields
t-henselian fields
Results of:
Koenigsmann and others

dependence
+ other algebraic, combinatorial and model theoretic assumptions

J. Koenigsmann, Definable Valuations, preprint, Delon, Dickmann, Gondard Paris VII, Seminaire Structures algébraiques ordonées (1994)

Definition

A formula $\varphi(x, \underline{y})$ has the independence property (IP) in a theory \mathfrak{T} if there exist a model \mathfrak{M} of \mathfrak{T} and

$$
\left\{a_{i}\right\}_{i \in \omega} \subseteq M
$$

and

$$
\left\{\underline{b}_{W}\right\}_{W \subseteq \omega} \subseteq M
$$

such that for every $W \subseteq \omega$ and every $i \in \omega$

$$
\mathfrak{M} \models \varphi\left(a_{i}, \underline{b}_{W}\right) \text { if and only if } i \in W .
$$

Definition

A formula is called dependent or NIP (not indepence property) (in \mathfrak{T}) if it is does not have the independence property (in \mathfrak{T}).

Definition

A theory \mathfrak{T} is called dependent or NIP if all formulas are dependent in \mathfrak{T}.

Definition

A structure \mathfrak{M} is called dependent if its theory $\operatorname{Th}(\mathfrak{M})$ is dependent.

The following classes of fields are dependent:

real closed fields stable fields (in particular: algebraically closed fields)	no non-trivial definable valuation

Fact

Let K be a dependent field with $\sqrt{-1} \in K$ such that for all finite extensions L / K and all $p \in \mathbb{N}$ prime $\left(L^{\times}:\left(L^{\times}\right)^{p}\right)<\infty$. Assume that there exists a finite extension L / K and a $p \in \mathbb{N}$ prime $\left(L^{\times}:\left(L^{\times}\right)^{p}\right)>1$.
Then K is not real closed and K is not stable.

Conjecture

Let K be a dependent field.
Let $\sqrt{-1} \in K$.
Assume that for all finite extensions L / K and all $p \in \mathbb{N}$ prime $\left(L^{\times}:\left(L^{\times}\right)^{p}\right)<\infty$.
Further assume there exists a finite extension L / K and a $p \in \mathbb{N}$ prime such that $\left(L^{\times}:\left(L^{\times}\right)^{p}\right)>1$. Then K admits a non-trivial definable valuation.

L		\mathcal{O}	non-trivial definable valuation ring
\mid	algebraic	\mid	
\mid	finite	\mid	
K		$\mathcal{O} \cap K$	non-trivial definable valuation ring

Fact

Let K be a field. Let L / K be a finite extension. If \mathcal{O} is a non-trivial definable valuation on L then $\mathcal{O} \cap K$ is a non-trivial definable valuation on K.

Question

How do we find a definable valuation on a field?

Definition

Let \mathcal{O} a valuation ring on a field K with maximal ideal \mathcal{M} and T an additive [multiplicative] subgroup of K.
(a) \mathcal{O} is compatible with T if and only if $\mathcal{M} \subseteq T[1+\mathcal{M} \subseteq T]$.
(b) \mathcal{O} is weakly compatible with T if and only if $\mathcal{A} \subseteq T$ $[1+\mathcal{A} \subseteq T]$ for some \mathcal{O}-ideal \mathcal{A} with $\sqrt{\mathcal{A}}=\mathcal{M}$.
(c) \mathcal{O} is coarsely compatible with T if and only if \mathcal{O} is weakly compatible with T and there is no proper coarsening $\widetilde{\mathcal{O}}$ of \mathcal{O} such that $\widetilde{\mathcal{O}}^{\times} \subseteq T$.

Remark

Let $T \neq K\left[T \neq K^{\times}\right]$and let $\mathcal{O} \neq K$ be weakly compatible with T.
Then there exists a valuation ring $\widetilde{\mathcal{O}}$ which is coarsely compatible with T such that $\mathcal{O} \subseteq \widetilde{\mathcal{O}} \subsetneq K$.

Definition and Lemma
Let $\mathcal{O}_{T}:=\bigcap\{\mathcal{O} \mid \mathcal{O}$ coarsely compatible with $T\}$. \mathcal{O}_{T} is a valuation ring on K.

Question

Which subgroups can we choose for T?
T should be a non-trivial, definable, proper subgroup of K. Definable subgroups of K are:

- The Artin-Schreier group $K^{(p)}:=\left\{x^{p}-x \mid x \in K\right\}$ for $p=\operatorname{char}(K)$.
- The group of p-th powers of the units of $K\left(K^{\times}\right)^{p}$ for any prime p.

Theorem (Kaplan-Scanlon-Wagner)

Let K be an infinite dependent field. Then K is Artin-Schreier closed, e.g. $K^{(p)}=K$ for $p=\operatorname{char}(K)$.

Corollary

Let K be an infinite dependent field and $T=K^{(p)}$ for $p=\operatorname{char}(K)$.
Then \mathcal{O}_{T} is trivial.
We will therefore from now on only consider $T=\left(K^{\times}\right)^{p}$ for p prime.

Question
When is \mathcal{O}_{T} definable?

Theorem (Koenigsmann)

Let K be a field and T be an additive or multiplicative subgroup of K.
Then \mathcal{O}_{T} is definable in $\mathcal{L}^{\prime}:=\{0,1 ;+,-, \cdot ; \underline{T}\}$ in the following cases

	$T \subseteq K$ additive	$T \subseteq K^{\times}$ multiplicative
group case	if and only if either \mathcal{O}_{T} is discrete or $\forall x \in \mathcal{M}_{T} x^{-1} \mathcal{O}_{T} \subseteq T$	always
weak case	if and only if \mathcal{O}_{T} is discrete	
residue case	always	if and only if

Theorem (Koenigsmann)

Let K be a field let $\sqrt{-1} \in K$. Let $T=\left(K^{\times}\right)^{p}$ for some prime p. Then \mathcal{O}_{T} is definable in $\mathcal{L}_{\text {Ring }}:=\{0,1 ;+,-, \cdot\}$ in the following cases

group case	always
weak case	if and only if \mathcal{O}_{T} is discrete
residue case	always

Lemma

Let v be a valuation on a field K. Let
T be a multiplicative subgroup such that there exists an $n \in \mathbb{N}$ with $\left(K^{\times}\right)^{n} \subseteq T$ and $(n, \operatorname{char}(\bar{K}))=1$ or char $(\bar{K})=0$ (e.g. $\left.n \in \mathcal{O}^{\times}\right)$
Then v is compatible with T if and only if it is weakly compatible with T.

Proposition

Let K be a field with $\sqrt{-1} \in K$ and char $(K)>0$. Let p be prime with $\operatorname{char}(K) \neq p$. Let $T:=\left(K^{\times}\right)^{p}$.
Then \mathcal{O}_{T} is definable.

Proposition

Let K be a field with $\sqrt{-1} \in K$. Let p be prime with $\operatorname{char}(K) \neq p$. Let $T:=\left(K^{\times}\right)^{p}$.
Then there exists a definable valuation which induces the same topology as \mathcal{O}_{T}.

Question

When is \mathcal{O}_{T} non-trivial?

Definition and Lemma
Let $\mathcal{O}_{T}:=\bigcap\{\mathcal{O} \mid \mathcal{O}$ coarsely compatible with $T\}$. \mathcal{O}_{T} is a valuation ring on K.

Lemma

If T is proper multiplicative subgroup of K^{\times}the following are equivalent:
(i) \mathcal{O}_{T} is non-trivial
(ii) there exists a non-trivial valuation ring \mathcal{O} on K such that \mathcal{O} and T are weakly compatible
(iii) $\mathcal{B}_{T}=\{(a T+b) \cap(c T+d) \mid a, b, c, d \in K, a, c \neq 0\}$ is a basis of a V-topology.

Definition and Lemma

Let K be a field and $\mathcal{B} \subseteq \mathcal{P}(K)$ such that
$(\mathrm{V} 1) \cap \mathcal{B}:=\bigcap_{U \in \mathcal{B}} U=\{0\}$ and $\{0\} \notin \mathcal{B}$
(V2) $\forall U, V \in \mathcal{B} \quad \exists W \in \mathcal{B} \quad W \subseteq U \cap V$
(V3) $\forall U \in \mathcal{B} \quad \exists V \in \mathcal{B} \quad V-V \subseteq U$
(V 4) $\forall U \in \mathcal{B} \quad \forall x, y \in K \quad \exists V \in \mathcal{B} \quad(x+V)(y+V) \subseteq$ $x y+U$
(V5) $\forall U \in \mathcal{B} \quad \forall x \in K^{\times} \quad \exists V \in \mathcal{B} \quad(x+V)^{-1} \subseteq x^{-1}+U$
(V6) $\forall U \in \mathcal{B} \quad \exists V \in \mathcal{B} \quad \forall x, y \in K \quad x y \in V \Rightarrow x \in U \vee y \in U$
Then

$$
\mathcal{T}_{\mathcal{B}}:=\{U \subseteq K \mid \forall x \in U \quad \exists V \in \mathcal{B} \quad x+V \subseteq U\}
$$

is a V-topology on K.

Fact

Let K be a field and \mathcal{T} a topology on K.
Then \mathcal{T} is a V-topology if and only if there exists either an archimedean absolute value or a valuation on K whose induced topology coincides with \mathcal{T}.

Lemma (Koenigsmann)

Let $T \subsetneq K^{\times}$be a multiplicative subgroup of K and and let \mathcal{T}_{T} be the topology with basis
$\mathcal{B}_{T}=\{(a T+b) \cap(c T+d) \mid a, b, c, d \in K, a, c \neq 0\}$. Let v be a non-trivial valuation on K.
$\mathcal{T}_{v}=\mathcal{T}_{T}$ if and only if T is weakly compatible with some valuation w such that $\mathcal{O}_{v} \subseteq \mathcal{O}_{w} \subsetneq K$.

Remark

If $\mathcal{O}_{v} \subseteq \mathcal{O}_{w}$ then $\mathcal{T}_{v}=\mathcal{T}_{w}$.

If \mathcal{O}_{T} is non-trivial there exists a non-trivial valuation v which is weakly compatible with T. By the last lemma we have $\mathcal{T}_{T}=\mathcal{T}_{v}$ and therefore \mathcal{T}_{T} is a V-topology.

On the other hand if \mathcal{T}_{T} is a V-topology then it is induced by a non-trivial absolute value or by a non-trivial valuation. It is possible to show that in our case \mathcal{T}_{T} is induced by a valuation. Therefore again by the last lemma there exists a non-trivial valuation which is weakly compatible with T. And hence \mathcal{O}_{T} is non-trivial.

