Fachbereich

Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Katharina Dupont
Gabriel Lehéricy

Real Algebraic Geometry II Ordered Sets and Ordinal Numbers

1 Notation. Let A and B be sets. We denote by $A \sqcup B$ the disjoint union of A and B.

2 Definition. Let $\left(A, \leq_{A}\right)$ and $\left(B, \leq_{B}\right)$ be two ordered sets.
(a) We define the sum of ordered sets

$$
\left(A, \leq_{A}\right)+\left(B, \leq_{B}\right)=A+B:=\left(A \sqcup B, \leq_{+}\right)
$$

such that for any $x_{1}, x_{2} \in A \sqcup B$

$$
x_{1} \leq_{+} x_{2} \Leftrightarrow \begin{cases}x_{1}, x_{2} \in A \text { and } x_{1} \leq_{A} x_{2} & \text { or } \\ x_{1}, x_{2} \in B \text { and } x_{1} \leq_{B} x_{2} & \text { or } \\ x_{1} \in A \text { and } x_{2} \in B & \end{cases}
$$

(b) We define the product of ordered sets

$$
\left(A, \leq_{A}\right) \cdot\left(B, \leq_{B}\right)=A \cdot B:=\left(A \times B, \leq_{\text {rlex }}\right)
$$

such that $\leq_{\text {rlex }}$ is the reverse lexicographic order, i.e. for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in A \times B$

$$
\left(x_{1}, y_{1}\right) \leq_{\text {rlex }}+\left(x_{2}, y_{2}\right) \Leftrightarrow \begin{cases}y_{1}<_{A} y_{2} & \text { or } \\ y_{1}=y_{2} \text { and } x_{1} \leq_{B} x_{2} & \end{cases}
$$

3 Definition. A set A is called transitive if any element of A is also a subset of A.

4 Definition. A set α is called an ordinal if it is transitive and if (α, \in) is a well-ordered set.

5 Definition. Let $(A,<)$ be a well-ordered set. The order type of $(A,<)$, denoted $\operatorname{ot}(A)$, is defined as the unique ordinal to which $(A,<)$ is isomorphic.

6 Definition. Let α and β be two ordinal numbers. Let $n \in \mathbb{N}$.
(a) We define the sum of ordinals as $\alpha+\beta:=$ ot $(\alpha+\beta)$.
(b) We define $\omega \cdot n:=\underbrace{\omega+\cdots+\omega}_{n-\text { times }}$.
(c) We define the product of ordinals $\alpha \cdot \beta:=\operatorname{ot}(\alpha \cdot \beta)$.
(d) We define $\omega^{n}:=\underbrace{\omega . \cdots . \omega}_{n-\text { times }}$.

