Fachbereich

Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Katharina Dupont
Gabriel Lehéricy

Real Algebraic Geometry II Exercise Sheet 6

Exercise 1 (archimedean equivalence)

Let G be an ordered abelian group. Let \sim^{+}and $<^{+}$on G be as defined in the lecture.
Show that
(a) \sim^{+}is an equivalence relation.
(b) for all $x, y, z \in G \backslash\{0\}$ if $x<^{+} y$ and $x \sim^{+} z$ then $z<^{+} y$.
(c) for all $x, y, z \in G \backslash\{0\}$ if $x<^{+} y$ and $y \sim^{+} z$ then $x<^{+} z$.

Exercise 2

Let G be an ordered abelian group. Let \sim^{+}and $<^{+}$on G be as defined in the lecture. Let $\Gamma:=G / \sim^{+}=\{[x] \mid x \in G \backslash\{0\}\}$. Define a relation $<_{\Gamma}$ on Γ by

$$
[y]<_{\Gamma}[x] \Leftrightarrow x<^{+} y
$$

for all $x, y \in G \backslash\{0\}$.
(a) Show that Γ is a totally ordered set under $<_{\Gamma}$.
(b) Define $v: G \longrightarrow \Gamma \cup\{\infty\}$ by $v(0)=\infty$ and $v(x)=[x]$ for all $x \in G \backslash\{0\}$.

Show that v is a valuation on G as a \mathbb{Z}-module.
(c) Show that for all , $y \in G$, if $\operatorname{sgn} x=\operatorname{sgn} y$, then $v(x+y)=\min \{v(x), v(y)\}$.
(d) Let $x \in G \backslash\{0\}$. Show that $C_{x}=G^{v(x)}$ where $C_{x}:=\bigcap\{C \mid C$ is a convex subgroup of G and $x \in C\}$.
(e) Let $x \in G \backslash\{0\}$. Show that $D_{x}=G_{v(x)}$ where $D_{x}:=\bigcup\{C \mid C$ is a convex subgroup of G and $x \notin D\}$.
(f) Conclude that B_{x}, the archimedean component of x in G, is equal to $B(G, v(x))$, the homogeneous component corresponding to $v(x)$, for all $x \in G \backslash\{0\}$.

1 Definition. Let C, D be convex subgroups of G with $C \subseteq D$.
We call the pair (C, D) a jump, if whenever D^{\prime} is a convex subgroup of G with $C \subseteq D^{\prime} \subseteq D$ then $D^{\prime}=C$ or $D^{\prime}=D$.

Exercise 3

Let $\left(G,<_{G}\right)$ be an ordered abelian group and C a convex subgroup of G. Let $B:=G / C$.
(a) We define on B a binary relation $<_{B}$ as follows:

For all $g_{1}, g_{2} \in G$ let $g_{1}+C<_{B} g_{2}+C$ if and only if $g_{1}<_{G} g_{2}$ and $g_{1}-g_{2} \notin C$.
Show that $\left(B,<_{B}\right)$ is an totally ordered group.
(b) Show that there is a bijective correspondence between the convex subgroups of B and the convex subgroups D of G with $C \subseteq D \subseteq G$.
(c) Show that a totally ordered abelian group G is archimedean if and only if G and $\{0\}$ are its only convex subgroups.
(d) Let D be a convex subgroup of G such that $C \subseteq D$.

Conclude that if (C, D) is a jump, then D / C is archimedean.

The exercise will be collected Thursday, 28/05/2015 until 10.00 at box 13 near F 441.
http://www.math.uni-konstanz.de/~ dupont/rag.htm

