Fachbereich

Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Katharina Dupont
Gabriel Lehéricy

Real Algebraic Geometry II Exercise Sheet 8

Exercise 1

Let H be a hardy field. Define the asymptotic equivalence as in the lecture and denote the equivalence class of $f \in H$ by $v(f)$ and the set of all equivalence classes by $v(H)$.
Let

$$
\begin{aligned}
w: H & \longrightarrow v(H) \cup\{\infty\} \\
f & \mapsto \begin{cases}v(f) & \text { if } f \neq 0 \\
\infty & \text { if } f=0\end{cases}
\end{aligned}
$$

(a) Verify that asymptotic equivalence is an equivalence relation.
(b) Let addition and order on $v(H)$ be as defined in the lecture. Verify that $v(H)$ is an ordered abelian group.
(c) Show that w is a valuation on H.
(d) Show that

$$
\begin{aligned}
H_{v} & =\left\{f \mid \lim _{x \rightarrow \infty} f(x) \in \mathbb{R}\right\} \\
I_{v} & =\left\{f \mid \lim _{x \rightarrow \infty} f(x)=0\right\} \\
\mathcal{U}_{v} & =\left\{f \mid \lim _{x \rightarrow \infty} f(x) \backslash\{0\} \in \mathbb{R}\right\}
\end{aligned}
$$

(e) Show that w is equivalent to the natural valuation on H.

Definition: Let K be a field and let $v_{1}: K \longrightarrow \Gamma_{1} \cup\{\infty\}$ and $v_{2}: K \longrightarrow \Gamma_{2} \cup\{\infty\}$ be two valuations on K. v_{1} and v_{2} are called equivalent if $\mathcal{O}_{v_{1}}=\mathcal{O}_{v_{2}}$.

Exercise 2

Let $k \subseteq \mathbb{R}$ be a field and G an ordered abelian group. Let $\mathbb{K}=k((G))$ be the field of generalized power series endowed with the lexicographic order and the valuation $v:=v_{\text {min }}$.
(a) Verify that $v\left(\mathbb{K}^{\times}\right) \cong G$.
(b) Let $s=\sum_{g \in G} s(g) t^{g} \in \mathcal{O}_{v}$. Show that for the residue \bar{s} of s we have $\bar{s}=s(v(s))$.
(c) Conclude that the residue field $\overline{\mathbb{K}}$ of \mathbb{K} is isomorphic to k.
(d) Give an example of a field \mathbb{K} as above which is not real closed.
(e) Show that if G is 2 -divisible and k is square root closed for positive elements, then \mathbb{K} is square root closed for positive elements.
Hint: Use Neumann's Lemma and the following identity (without proof):

$$
(1+\varepsilon)^{\alpha}=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}}{n!} \varepsilon^{n}
$$

for $\alpha \in \mathbb{Q}^{>0}$ and $(\alpha)_{n}:=\alpha \cdot(\alpha-1) \cdots(\alpha-n+1)$.
Then prove that for $\varepsilon \in \mathbb{K}$ with $v(\varepsilon)>0$ we have $(1+\epsilon)^{\frac{1}{2}}=\sqrt{1+\varepsilon}$.

Definition:

(a) Let G be an abelian group and $p \in \mathbb{N}$ prime. G is called p divisible if for every $g \in G$ there exists $h \in G$ such that $g=p \cdot h$.
(b) Let K be an ordered field. K is called square root closed for positive elements if for every $x \in K^{>0}$ there exists $y \in K$ such that $x=y^{2}$.

The exercise will be collected Thursday, 11/06/2015 until 10.00 at box 13 near F 441.
http://www.math.uni-konstanz.de/~ dupont/rag.htm

