Prime Polynomial Values of Linear Functions in Short Intervals

Efrat Bank

School of Mathematical Sciences Tel-Aviv University

joint with L. Bary-Soroker

Method of proof

Recent related works

Outline

2 Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture

3 Method of proof

Outline

- Conjectures vs. Theorems
 - Primes in Short Intervals
 - Primes in Arithmetic Progressions
 - Correlations Between Primes
 - Combined Conjecture
- 3 Method of proof
- A Recent related works

The Prime Number Theorem

• Let 1 be the prime characteristic function, i.e.,

$$\mathbb{1}(h) = \begin{cases} 1, & h \text{ is prime} \\ 0, & otherwise. \end{cases}$$

The Prime Number Theorem

• Let 1 be the prime characteristic function, i.e.,

$$\mathbb{1}(h) = \begin{cases} 1, & h \text{ is prime} \\ 0, & otherwise. \end{cases}$$

• The Prime Number Theorem (PNT):

$$\sum_{0 < h \le x} \mathbb{1}(h) \sim \int_2^x \frac{dt}{\log t} \sim \frac{x}{\log x}$$

as $x \to \infty$.

Method of proof

Recent related works

The Prime Polynomial Theorem

• Let $\mathcal{M}(k,q) \subseteq \mathcal{P}_{\leq k} \subset \mathbb{F}_q[t]$

Method of proof

Recent related works

The Prime Polynomial Theorem

• Let
$$\mathcal{M}(k,q) \subseteq \mathcal{P}_{\leq k} \subset \mathbb{F}_q[t]$$

• For $h \in \mathbb{F}_q[t]$ let $||h|| = q^{\deg h}$ and ||0|| = 0.

The Prime Polynomial Theorem

- Let $\mathcal{M}(k,q) \subseteq \mathcal{P}_{\leq k} \subset \mathbb{F}_q[t]$
- For $h \in \mathbb{F}_q[t]$ let $||h|| = q^{\deg h}$ and ||0|| = 0.
- Let 1 be the prime polynomial characteristic function, i.e.,

$$\mathbb{1}(h) = egin{cases} 1, & h \text{ is prime} \ 0, & otherwise. \end{cases}$$

(prime polynomial = monic + irreducible polynomial)

Method of proof

Recent related works

The Prime Polynomial Theorem

• The Prime Polynomial Theorem (PPT):

$$\sum_{h\in\mathcal{M}(k,q)}\mathbb{1}(h)\sim\frac{q^k}{k}$$

Method of proof

Recent related works

The Prime Polynomial Theorem

• The Prime Polynomial Theorem (PPT):

$$\sum_{h\in\mathcal{M}(k,q)}\mathbb{1}(h)\sim\frac{q^{k}}{k}$$

$$\sum_{h\in\mathcal{M}(k,q)}\mathbb{1}(h)=rac{q^k}{k}+O\left(rac{q^{k/2}}{k}
ight)$$

Method of proof

Recent related works

The Prime Polynomial Theorem

• The Prime Polynomial Theorem (PPT):

h

$$\sum_{\in \mathcal{M}(k,q)} \mathbb{1}(h) \sim \frac{q^k}{k}$$

$$\sum_{h\in\mathcal{M}(k,q)}\mathbb{1}(h)=rac{q^k}{k}+O\left(rac{q^{k/2}}{k}
ight)$$

In comparison with PNT, we replace:

- 0 < $h \le x \leftrightarrow h \in \mathcal{M}(k,q)$
- $|[0,x]| = x \leftrightarrow |\{h \in \mathcal{M}(k,q)\}| = q^k$
- $\log x \leftrightarrow k$

• In the PNT, we consider the limit $x \longrightarrow \infty$. In the PPT, we consider the limit $q^k \longrightarrow \infty$

In the PNT, we consider the limit x → ∞. In the PPT, we consider the limit q^k → ∞
 q^k → ∞

In the PNT, we consider the limit x → ∞. In the PPT, we consider the limit q^k → ∞
q^k → ∞
k → ∞

Method of proof

Recent related works

Outline

2 Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture
- 3 Method of proof
- A Recent related works

Introduction

Conjectures vs. Theorems

Method of proof

Recent related works

Primes in Short Intervals

Outline

2 Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture
- 3 Method of proof
- A Recent related works

Method of proof

Recent related works

Primes in Short Intervals

Prime numbers in short intervals

$$\sum_{h\in I}\mathbb{1}(h)\sim \frac{\Phi(x)}{\log x}.$$

Method of proof

Recent related works

Primes in Short Intervals

Prime numbers in short intervals

• Let $I = (x, x + \Phi(x)]$. One may naively expect that,

$$\sum_{h\in I} \mathbb{1}(h) \sim \frac{\Phi(x)}{\log x}.$$

• Clearly, Φ must satisfy $\frac{\Phi(x)}{\log x} \longrightarrow \infty$ as $x \longrightarrow \infty$.

Method of proof

Recent related works

Primes in Short Intervals

Prime numbers in short intervals

$$\sum_{h\in I}\mathbb{1}(h)\sim \frac{\Phi(x)}{\log x}.$$

- Clearly, Φ must satisfy $\frac{\Phi(x)}{\log x} \longrightarrow \infty$ as $x \longrightarrow \infty$.
- From PNT, the above holds for Φ(x) ~ cx for any fixed 0 < c < 1.

Method of proof

Recent related works

Primes in Short Intervals

Prime numbers in short intervals

$$\sum_{h\in I} \mathbb{1}(h) \sim \frac{\Phi(x)}{\log x}$$

- Clearly, Φ must satisfy $\frac{\Phi(x)}{\log x} \longrightarrow \infty$ as $x \longrightarrow \infty$.
- From PNT, the above holds for Φ(x) ~ cx for any fixed 0 < c < 1.
- Assuming the Riemann Hypothesis, it holds for $\Phi(x) \sim x^{\frac{1}{2}+\epsilon}$.

Method of proof

Recent related works

Primes in Short Intervals

Prime numbers in short intervals

$$\sum_{h\in I} \mathbb{1}(h) \sim \frac{\Phi(x)}{\log x}$$

- Clearly, Φ must satisfy $\frac{\Phi(x)}{\log x} \longrightarrow \infty$ as $x \longrightarrow \infty$.
- From PNT, the above holds for $\Phi(x) \sim cx$ for any fixed 0 < c < 1.
- Assuming the Riemann Hypothesis, it holds for $\Phi(x) \sim x^{\frac{1}{2}+\epsilon}$.
- For Φ(x) ~ log² x Selberg showed (assuming RH) that it is true for almost every x, however, Maier showed that it does not hold for all x.

Primes in Short Intervals

Conjecture (Primes in short intervals)

$$\sum_{h\in I}\mathbb{1}(h)\sim \frac{x^{\epsilon}}{\log x}.$$

Where $I = (x, x + x^{\epsilon}]$, x is large and $0 < \epsilon < 1$.

Primes in Short Intervals

Conjecture (Primes in short intervals)

$$\sum_{h\in I} \mathbb{1}(h) \sim \frac{x^{\epsilon}}{\log x}.$$

Where $I = (x, x + x^{\epsilon}]$, x is large and $0 < \epsilon < 1$.

• Heath-Brown (1988) proved this for $\epsilon = \frac{7}{12}$

Primes in Short Intervals

Conjecture (Primes in short intervals)

$$\sum_{h\in I} \mathbb{1}(h) \sim \frac{x^{\epsilon}}{\log x}.$$

Where $I = (x, x + x^{\epsilon}]$, x is large and $0 < \epsilon < 1$.

- Heath-Brown (1988) proved this for $\epsilon = \frac{7}{12}$
- The barrier is $\epsilon = \frac{1}{2}$.

Method of proof

Recent related works

Primes in Short Intervals

Prime Polynomials in short intervals

• An interval \mathcal{I} around $f_0 \in \mathcal{M}(k,q)$ is defined as

$$\mathcal{I} = \mathcal{I}(f_0, m) = \{h \in \mathbb{F}_q[t] : ||f_0 - h|| \le q^m\} = f_0 + \mathcal{P}_{\le m}$$

Method of proof

Recent related works

Primes in Short Intervals

Prime Polynomials in short intervals

• An interval \mathcal{I} around $f_0 \in \mathcal{M}(k,q)$ is defined as

$$\mathcal{I} = \mathcal{I}(f_0, m) = \{h \in \mathbb{F}_q[t] : ||f_0 - h|| \le q^m\} = f_0 + \mathcal{P}_{\le m}$$

 We want to estimate the number of primes in short intervals, i.e., when m < k.

Method of proof

Primes in Short Intervals

Theorem (B., Bary-Soroker, Rosenzweig) Let $f_0 \in \mathcal{M}(k, q)$, $3 \le m < k$, and $\mathcal{I} = \mathcal{I}(f_0, m)$. Then, $\sum_{f \in \mathcal{I}} \mathbb{1}(f) = \frac{\#\mathcal{I}}{k}(1 + O_k(q^{-1/2})),$

as $q \longrightarrow \infty$ and where the constant depends only on k.

Primes in Short Intervals

Theorem (B., Bary-Soroker, Rosenzweig)

Let $f_0 \in \mathcal{M}(k, q)$, $3 \leq m < k$, and $\mathcal{I} = \mathcal{I}(f_0, m)$. Then,

$$\sum_{f \in \mathcal{I}} \mathbb{1}(f) = \frac{\#\mathcal{I}}{k} (1 + O_k(q^{-1/2})),$$

as $q \rightarrow \infty$ and where the constant depends only on k.

• In particular, if we let $\epsilon = \frac{m}{k}$ we get the full analogue of the Number Theory case.

Primes in Short Intervals

Theorem (B., Bary-Soroker, Rosenzweig)

Let $f_0 \in \mathcal{M}(k, q)$, $3 \le m < k$, and $\mathcal{I} = \mathcal{I}(f_0, m)$. Then,

$$\sum_{f \in \mathcal{I}} \mathbb{1}(f) = \frac{\#\mathcal{I}}{k} (1 + O_k(q^{-1/2})),$$

as $q \rightarrow \infty$ and where the constant depends only on k.

- In particular, if we let $\epsilon = \frac{m}{k}$ we get the full analogue of the Number Theory case.
- We also deal with the cases m < 3.

Theorem (B., Bary-Soroker, Rosenzweig)

Let $f_0 \in \mathcal{M}(k, q)$, $3 \le m < k$, and $\mathcal{I} = \mathcal{I}(f_0, m)$. Then,

$$\sum_{f \in \mathcal{I}} \mathbb{1}(f) = \frac{\#\mathcal{I}}{k} (1 + O_k(q^{-1/2})),$$

as $q \rightarrow \infty$ and where the constant depends only on k.

- In particular, if we let $\epsilon = \frac{m}{k}$ we get the full analogue of the Number Theory case.
- We also deal with the cases m < 3.
 - For *m* = 2 we show that it holds under additional conditions.

Method of proof

Theorem (B., Bary-Soroker, Rosenzweig)

Let $f_0 \in \mathcal{M}(k, q)$, $3 \leq m < k$, and $\mathcal{I} = \mathcal{I}(f_0, m)$. Then,

$$\sum_{f \in \mathcal{I}} \mathbb{1}(f) = \frac{\#\mathcal{I}}{k} (1 + O_k(q^{-1/2})),$$

as $q \longrightarrow \infty$ and where the constant depends only on k.

- In particular, if we let $\epsilon = \frac{m}{k}$ we get the full analogue of the Number Theory case.
- We also deal with the cases *m* < 3.
 - For *m* = 2 we show that it holds under additional conditions.
 - For m = 1, 0 we show that it fails.

Primes in Arithmetic Progressions

Outline

2

Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture
- 3 Method of proof
- Recent related works

Method of proof

Recent related works

Primes in Arithmetic Progressions

Primes in Arithmetic Progressions

• Let a and b be fixed, relatively prime integers.

Primes in Arithmetic Progressions

Primes in Arithmetic Progressions

- Let a and b be fixed, relatively prime integers.
- The Prime Number Theorem for Arithmetic Progressions:

$$\sum_{\substack{0 < h < x \\ h \equiv a \pmod{b}}} \mathbb{1}(h) \sim \frac{1}{\varphi(b)} \cdot \frac{x}{\log(x)}$$

Primes in Arithmetic Progressions

Conjecture (Primes in AP with large modulus)

For every $\delta > 0$,

$$\sum_{\substack{0 < h < x \\ m \equiv a \pmod{b}}} \mathbb{1}(h) \sim \frac{1}{\varphi(b)} \cdot \frac{x}{\log(x)}$$

holds in the range $0 < a < b < x^{1-\delta}$
Conjecture (Primes in AP with large modulus)

For every $\delta > 0$,

$$\sum_{\substack{0 < h < x \\ \equiv a \pmod{b}}} \mathbb{1}(h) \sim \frac{1}{\varphi(b)} \cdot \frac{x}{\log(x)}$$

holds in the range $0 < a < b < x^{1-\delta}$

h

• Assuming GRH, the above remains true when $b < x^{\frac{1}{2}-o(1)}$.

Conjecture (Primes in AP with large modulus)

For every $\delta > 0$,

$$\sum_{\substack{0 < h < x \\ \equiv a \pmod{b}}} \mathbb{1}(h) \sim \frac{1}{\varphi(b)} \cdot \frac{x}{\log(x)}$$

holds in the range $0 < a < b < x^{1-\delta}$

h

Assuming GRH, the above remains true when b < x^{1/2}-o(1).
Bombieri-Vinogradov: true for almost all b < x^{1/2}-o(1).

Theorem (B., Bary-Soroker, Rosenzweig)

Let k be a fixed integer and $\delta > 0$. Then,

$$\sum_{\substack{h\in\mathcal{M}(k,q)\ b\equiv a\pmod{b}}} \mathbb{1}(h)\sim rac{1}{arphi(b)}\cdot rac{q^k}{k}$$

holds uniformly for all relatively prime $a(t), b(t) \in \mathbb{F}_q[t]$ with deg $b < k(1 - \delta)$

Conjecture (Primes in AP in short intervals)

Let L(X) = bX + a, $a, b \in \mathbb{Z}$

$$\sum_{h\in[x,x+x^{\epsilon}]}\mathbb{1}(L(h))\sim \frac{b}{\varphi(b)}\cdot \frac{x^{\epsilon}}{\log(L(x))}, \quad x\to\infty,$$

where 0 < a < b, $b^{\delta} < x$ or b < 0, $|b|^{1+\delta} < a$ and $|b|x^{\alpha} < a < |b|x^{\beta}$ for $1 < \alpha < \beta$.

Outline

2

Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture
- 3 Method of proof
- Recent related works

Method of proof

Recent related works

Correlations Between Primes

Correlations between primes

Conjecture (The Hardy-Littlewood n-tuple conjecture)

$$\sum_{0 < h \le x} \mathbb{1}(h+a_1) \cdots \mathbb{1}(h+a_n) \sim \mathfrak{S}(a_1, \ldots, a_n) \frac{x}{(\log x)^n}, \quad x \to \infty,$$

where the a_i 's are distinct and $\mathfrak{S}(a_1, \ldots, a_n)$ is a constant depending on the a_i 's.

Hardy-Littlewood for function fields

Theorem (Hardy-Littlewood for function fields)

$$\sum_{h\in\mathcal{M}(k,q)}\mathbb{1}(h+a_1)\cdots\mathbb{1}(h+a_n)=\frac{q^k}{k^n}(1+O_{k,n}(q^{-1/2})),$$

holds uniformly on all $a_1, \ldots, a_n \in \mathbb{F}_q[t]$ of degrees deg $(a_i) < k$ and for a fixed k.

Hardy-Littlewood for function fields

Theorem (Hardy-Littlewood for function fields)

$$\sum_{h\in\mathcal{M}(k,q)}\mathbb{1}(h+a_1)\cdots\mathbb{1}(h+a_n)=\frac{q^k}{k^n}(1+O_{k,n}(q^{-1/2})),$$

holds uniformly on all $a_1, \ldots, a_n \in \mathbb{F}_q[t]$ of degrees deg $(a_i) < k$ and for a fixed k.

 Bender and Pollack (2009) proved this for the case n = 2 and q odd.

Hardy-Littlewood for function fields

Theorem (Hardy-Littlewood for function fields)

$$\sum_{h\in\mathcal{M}(k,q)}\mathbb{1}(h+a_1)\cdots\mathbb{1}(h+a_n)=\frac{q^k}{k^n}(1+O_{k,n}(q^{-1/2})),$$

holds uniformly on all $a_1, \ldots, a_n \in \mathbb{F}_q[t]$ of degrees deg $(a_i) < k$ and for a fixed k.

- Bender and Pollack (2009) proved this for the case n = 2 and q odd.
- Bary-Soroker (2014) proved this for any n and q odd.

Hardy-Littlewood for function fields

Theorem (Hardy-Littlewood for function fields)

$$\sum_{h\in\mathcal{M}(k,q)}\mathbb{1}(h+a_1)\cdots\mathbb{1}(h+a_n)=\frac{q^k}{k^n}(1+O_{k,n}(q^{-1/2})),$$

holds uniformly on all $a_1, \ldots, a_n \in \mathbb{F}_q[t]$ of degrees deg $(a_i) < k$ and for a fixed k.

- Bender and Pollack (2009) proved this for the case n = 2 and q odd.
- Bary-Soroker (2014) proved this for any n and q odd.
- Dan Carmon (2015) resolved the above for fields of characteristic 2.

Method of proof

Recent related works

Combined Conjecture

Outline

2 Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture
- 3 Method of proof
- 4 Recent related works

Combined Conjecture

Let $L_i = b_i X + a_i$, i = 1, ..., n be distinct primitive linear functions, i.e, $gcd(a_i, b_i) = 1$. One may expect that,

Conjecture (Combined conjecture)

$$\sum_{h\in[x,x+x^{\epsilon}]}\mathbb{1}(L_1(h))\cdots\mathbb{1}(L_n(h))\sim \mathfrak{S}(L_1,\ldots,L_n)\frac{x^{\epsilon}}{\prod_{i=1}^n\log(L_i(x))},$$

holds uniformly, when $x \to \infty$ and $\mathfrak{S}(L_1, \ldots, L_n)$ is a constant depending on the L_i 's.

Combined Conjecture

Prime polynomial values of several linear functions in short intervals

Theorem (B., Bary-Soroker) Let B > 0 and $f_0 \in \mathcal{M}(k, q)$, $2 \le m < k$, $\mathcal{I}(f_0, m)$. Then, $\sum_{f \in \mathcal{I}(f_0, m)} \mathbb{1}(L_1(f)) \cdots \mathbb{1}(L_n(f)) = \frac{\#\mathcal{I}(f_0, m)}{\prod_{i=1}^n \deg(L_i(f_0))} (1 + O_B(q^{-1/2}))$

Recent related works

Combined Conjecture

Prime polynomial values of several linear functions in short intervals

Theorem (B., Bary-Soroker) Let B > 0 and $f_0 \in \mathcal{M}(k, q)$, $2 \le m < k$, $\mathcal{I}(f_0, m)$. Then, $\sum_{f \in \mathcal{I}(f_0, m)} \mathbb{1}(L_1(f)) \cdots \mathbb{1}(L_n(f)) = \frac{\#\mathcal{I}(f_0, m)}{\prod_{i=1}^n \deg(L_i(f_0))} (1 + O_B(q^{-1/2}))$

holds uniformly as $q \longrightarrow \infty$ odd, for:

• $L_1(X), \ldots, L_n(X)$ distinct primitive linear functions

Combined Conjecture

Prime polynomial values of several linear functions in short intervals

Theorem (B., Bary-Soroker) Let B > 0 and $f_0 \in \mathcal{M}(k, q), 2 \le m < k, \mathcal{I}(f_0, m)$. Then, $\sum_{f \in \mathcal{I}(f_0, m)} \mathbb{1}(L_1(f)) \cdots \mathbb{1}(L_n(f)) = \frac{\#\mathcal{I}(f_0, m)}{\prod_{i=1}^n \deg(L_i(f_0))} (1 + O_B(q^{-1/2}))$

- $L_1(X), \ldots, L_n(X)$ distinct primitive linear functions
- The L_i 's are of bounded height, i.e., max{deg $a_i(t)$, deg $b_i(t)$ } $\leq B$

Combined Conjecture

Prime polynomial values of several linear functions in short intervals

Theorem (B., Bary-Soroker) Let B > 0 and $f_0 \in \mathcal{M}(k, q)$, $2 \le m < k$, $\mathcal{I}(f_0, m)$. Then, $\sum_{f \in \mathcal{I}(f_0, m)} \mathbb{1}(L_1(f)) \cdots \mathbb{1}(L_n(f)) = \frac{\#\mathcal{I}(f_0, m)}{\prod_{i=1}^n \deg(L_i(f_0))} (1 + O_B(q^{-1/2}))$

- $L_1(X), \ldots, L_n(X)$ distinct primitive linear functions
- The L_i's are of bounded height, i.e., max{deg a_i(t), deg b_i(t)} ≤ B
- 1 ≤ n ≤ B

Combined Conjecture

Prime polynomial values of several linear functions in short intervals

Theorem (B., Bary-Soroker) Let B > 0 and $f_0 \in \mathcal{M}(k, q), 2 \le m < k, \mathcal{I}(f_0, m)$. Then, $\sum_{f \in \mathcal{I}(f_0, m)} \mathbb{1}(L_1(f)) \cdots \mathbb{1}(L_n(f)) = \frac{\#\mathcal{I}(f_0, m)}{\prod_{i=1}^n \deg(L_i(f_0))} (1 + O_B(q^{-1/2}))$

- $L_1(X), \ldots, L_n(X)$ distinct primitive linear functions
- The L_i's are of bounded height, i.e., max{deg a_i(t), deg b_i(t)} ≤ B
- 1 ≤ n ≤ B
- 3 ≤ k ≤ B

Outline

1 Introduction

Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture

Method of proof

A Recent related works

Main idea

 The main idea is to consider a generic polynomial *F* ∈ *I*(f₀, m). This means that we think of such a polynomial as a polynomial of the form

$$\mathcal{F}(\mathbf{A},t) = f_0(t) + \sum_{i=0}^m A_i t^i \in \mathbb{F}_q[A_0,...,A_m][t]$$

Main idea

 The main idea is to consider a generic polynomial *F* ∈ *I*(f₀, m). This means that we think of such a polynomial as a polynomial of the form

$$\mathcal{F}(\mathbf{A},t) = f_0(t) + \sum_{i=0}^m A_i t^i \in \mathbb{F}_q[A_0,...,A_m][t]$$

 We are interested in the number of substitutions A_i → a_i where a_i ∈ F_q such that L_i(F(a₀,..., a_m, t)), i = 1,..., n are all prime polynomials.

Main idea

 The main idea is to consider a generic polynomial *F* ∈ *I*(f₀, m). This means that we think of such a polynomial as a polynomial of the form

$$\mathcal{F}(\mathbf{A},t) = f_0(t) + \sum_{i=0}^m A_i t^i \in \mathbb{F}_q[A_0,...,A_m][t]$$

- We are interested in the number of substitutions A_i → a_i where a_i ∈ F_q such that L_i(F(a₀,..., a_m, t)), i = 1,..., n are all prime polynomials.
- Using this idea, the proof is divided into two main parts:
 - Computing Galois groups.
 - Counting argument.

Method of proof

Recent related works

Computing Galois group

Proposition

Let L_1, \dots, L_n be distinct primitive linear functions and $f_0 \in \mathbb{F}[t]$ a monic polynomial of degree k. Let $\mathcal{F} = f_0 + \sum_{j=0}^m A_j t^j$ where $2 \leq m < k$. Then,

$$\operatorname{Gal}\left(\prod_{i=1}^{n} L_{i}(\mathcal{F}), \mathbb{F}(\mathbf{A})\right) = \prod_{i=1}^{n} \operatorname{Gal}(L_{i}(\mathcal{F}), \mathbb{F}(\mathbf{A})) = S_{k_{1}} \times \cdots \times S_{k_{n}},$$

where $k_i = \deg(L_i(f_0))$ *.*

Method of proof

Recent related works

Sketch proof of the proposition

Proof:

• The splitting fields of $L_i(\mathcal{F})$ are linearly disjoint.

Method of proof

Recent related works

Sketch proof of the proposition

- The splitting fields of $L_i(\mathcal{F})$ are linearly disjoint.
- $\operatorname{Gal}(L_i(\mathcal{F}), \mathbb{F}(\mathbf{A})) = S_{k_i}$ where $k_i = \operatorname{deg}(L_i(f_0))$

Method of proof

Recent related works

Sketch proof of the proposition

- The splitting fields of $L_i(\mathcal{F})$ are linearly disjoint.
- $\operatorname{Gal}(L_i(\mathcal{F}), \mathbb{F}(\mathbf{A})) = S_{k_i}$ where $k_i = \operatorname{deg}(L_i(f_0))$
 - $L_i(\mathcal{F})$ is separable in *t* and irreducible in the ring $\mathbb{F}(\mathbf{A})[t]$.

Recent related works

Sketch proof of the proposition

- The splitting fields of $L_i(\mathcal{F})$ are linearly disjoint.
- $\operatorname{Gal}(L_i(\mathcal{F}), \mathbb{F}(\mathbf{A})) = S_{k_i}$ where $k_i = \operatorname{deg}(L_i(f_0))$
 - $L_i(\mathcal{F})$ is separable in *t* and irreducible in the ring $\mathbb{F}(\mathbf{A})[t]$.
 - The Galois group of $L_i(\mathcal{F})$ over $\mathbb{F}(\mathbf{A})$ is doubly transitive.

Recent related works

Sketch proof of the proposition

- The splitting fields of $L_i(\mathcal{F})$ are linearly disjoint.
- $\operatorname{Gal}(L_i(\mathcal{F}), \mathbb{F}(\mathbf{A})) = S_{k_i}$ where $k_i = \operatorname{deg}(L_i(f_0))$
 - $L_i(\mathcal{F})$ is separable in *t* and irreducible in the ring $\mathbb{F}(\mathbf{A})[t]$.
 - The Galois group of $L_i(\mathcal{F})$ over $\mathbb{F}(\mathbf{A})$ is doubly transitive.
 - The Galois group of $L_i(\mathcal{F})$ contains a transposition.

Method of proof

Recent related works

Counting argument

Proposition (An explicit Chebotarev density theorem)

Let

$$\mathcal{H}(\mathbf{A},t) = \mathcal{F}_1 \cdots \mathcal{F}_n \in \mathbb{F}_q[A_0,...,A_m][t]$$

Assume that $\operatorname{Gal}(\mathcal{H}, \mathbb{F}_q(\mathbf{A})) = S_{k_1} \times \cdots \times S_{k_n}$ where $k_i = \deg_t(\mathcal{F}_i)$. Then,

$$\sum_{\mathbf{a}\in\mathbb{F}_q^{m+1}}\mathbb{1}(\mathcal{F}_1(\mathbf{a},t))\cdots\mathbb{1}(\mathcal{F}_n(\mathbf{a},t))=\frac{q^{m+1}}{\prod_{i=1}^n k_i}(1+O_{m,B}(q^{-1/2}))$$

Method of proof

Recent related works

Outline

1 Introduction

Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture

3 Method of proof

Keating-Rudnick (2014)- The variance of primes in short intervals.

- Keating-Rudnick (2014)- The variance of primes in short intervals.
- Carmon-Rudnick, Carmon (2014,2015)- Autocorrelations of the Mobius function and Chowla's conjecture.

- Keating-Rudnick (2014)- The variance of primes in short intervals.
- Carmon-Rudnick, Carmon (2014,2015)- Autocorrelations of the Mobius function and Chowla's conjecture.
- Entin (2015)- Bateman-Horn conjecture.

- Keating-Rudnick (2014)- The variance of primes in short intervals.
- Carmon-Rudnick, Carmon (2014,2015)- Autocorrelations of the Mobius function and Chowla's conjecture.
- Entin (2015)- Bateman-Horn conjecture.
- Rodgers (2015)- The covariance of almost-primes.

Introduction

Conjectures vs. Theorems

Method of proof

Recent related works

