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The Prime Number Theorem

Let 1 be the prime characteristic function, i.e.,

1(h) =

{
1, h is prime
0, otherwise.

The Prime Number Theorem (PNT):∑
0<h≤x

1(h) ∼
∫ x

2

dt
log t

∼ x
log x

as x −→∞.
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The Prime Polynomial Theorem

LetM(k ,q) ⊆ P≤k ⊂ Fq[t ]

For h ∈ Fq[t ] let ||h|| = qdeg h and ||0|| = 0.
Let 1 be the prime polynomial characteristic function, i.e.,

1(h) =

{
1, h is prime
0, otherwise.

(prime polynomial = monic + irreducible polynomial)
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The Prime Polynomial Theorem

The Prime Polynomial Theorem (PPT):

∑
h∈M(k ,q)

1(h) ∼ qk

k

∑
h∈M(k ,q)

1(h) =
qk

k
+ O

(
qk/2

k

)

In comparison with PNT, we replace:
0 < h ≤ x ↔ h ∈M(k ,q)

|[0, x ]| = x ↔ |{h ∈M(k ,q)}| = qk

log x ↔ k
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Limit issues

In the PNT, we consider the limit x −→∞. In the PPT, we
consider the limit qk −→∞

qk −→∞
k −→∞
q −→∞
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Primes in Short Intervals

Prime numbers in short intervals

Let I = (x , x + Φ(x)]. One may naively expect that,∑
h∈I

1(h) ∼ Φ(x)

log x
.

Clearly, Φ must satisfy Φ(x)
log x −→∞ as x −→∞.

From PNT, the above holds for Φ(x) ∼ cx for any fixed
0 < c < 1.
Assuming the Riemann Hypothesis, it holds for
Φ(x) ∼ x

1
2 +ε.

For Φ(x) ∼ log2 x Selberg showed (assuming RH) that it is
true for almost every x, however, Maier showed that it does
not hold for all x.
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Primes in Short Intervals

Conjecture (Primes in short intervals)∑
h∈I

1(h) ∼ x ε

log x
.

Where I = (x , x + x ε], x is large and 0 < ε < 1.

Heath-Brown (1988) proved this for ε = 7
12

The barrier is ε = 1
2 .
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Primes in Short Intervals

Prime Polynomials in short intervals

An interval I around f0 ∈M(k ,q) is defined as

I = I(f0,m) = {h ∈ Fq[t ] : ||f0 − h|| ≤ qm} = f0 + P≤m

We want to estimate the number of primes in short
intervals, i.e., when m < k.
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Primes in Short Intervals

Theorem (B., Bary-Soroker, Rosenzweig)
Let f0 ∈M(k ,q), 3 ≤ m < k, and I = I(f0,m). Then,∑

f∈I

1(f ) =
#I
k

(1 + Ok (q−1/2)),

as q −→∞ and where the constant depends only on k.

In particular, if we let ε = m
k we get the full analogue of the

Number Theory case.
We also deal with the cases m < 3.

For m = 2 we show that it holds under additional conditions.
For m = 1,0 we show that it fails.
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Primes in Arithmetic Progressions

Primes in Arithmetic Progressions

Let a and b be fixed, relatively prime integers.

The Prime Number Theorem for Arithmetic Progressions:∑
0<h<x

h≡a (mod b)

1(h) ∼ 1
ϕ(b)

· x
log(x)
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Primes in Arithmetic Progressions

Conjecture (Primes in AP with large modulus)
For every δ > 0, ∑

0<h<x
h≡a (mod b)

1(h) ∼ 1
ϕ(b)

· x
log(x)

holds in the range 0 < a < b < x1−δ

Assuming GRH, the above remains true when b < x
1
2−o(1).

Bombieri-Vinogradov: true for almost all b < x
1
2−o(1).
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Primes in Arithmetic Progressions

Theorem (B., Bary-Soroker, Rosenzweig)
Let k be a fixed integer and δ > 0. Then,

∑
h∈M(k ,q)

h≡a (mod b)

1(h) ∼ 1
ϕ(b)

· qk

k

holds uniformly for all relatively prime a(t),b(t) ∈ Fq[t ] with
deg b < k(1− δ)



Introduction Conjectures vs. Theorems Method of proof Recent related works

Primes in Arithmetic Progressions

Conjecture (Primes in AP in short intervals)
Let L(X ) = bX + a, a,b ∈ Z∑

h∈[x ,x+xε]

1(L(h)) ∼ b
ϕ(b)

· x ε

log(L(x))
, x →∞,

where 0 < a < b, bδ < x or b < 0, |b|1+δ < a and
|b|xα < a < |b|xβ for 1 < α < β.
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Correlations Between Primes

Correlations between primes

Conjecture (The Hardy-Littlewood n-tuple conjecture)

∑
0<h≤x

1(h + a1) · · ·1(h + an) ∼ S(a1, . . . ,an)
x

(log x)n , x →∞,

where the ai ’s are distinct and S(a1, . . . ,an) is a constant
depending on the ai ’s.
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Correlations Between Primes

Hardy-Littlewood for function fields

Theorem (Hardy-Littlewood for function fields)

∑
h∈M(k ,q)

1(h + a1) · · ·1(h + an) =
qk

kn (1 + Ok ,n(q−1/2)),

holds uniformly on all a1, . . . ,an ∈ Fq[t ] of degrees deg(ai) < k
and for a fixed k.

Bender and Pollack (2009) proved this for the case n = 2
and q odd.
Bary-Soroker (2014) proved this for any n and q odd.
Dan Carmon (2015) resolved the above for fields of
characteristic 2.
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Combined Conjecture

Let Li = biX + ai , i = 1, . . . ,n be distinct primitive linear
functions, i.e, gcd(ai ,bi) = 1. One may expect that,

Conjecture (Combined conjecture)

∑
h∈[x ,x+xε]

1(L1(h)) · · ·1(Ln(h)) ∼ S(L1, . . . ,Ln)
x ε∏n

i=1 log(Li(x))
,

holds uniformly, when x →∞ and S(L1, . . . ,Ln) is a constant
depending on the Li ’s.
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Combined Conjecture

Prime polynomial values of several linear functions in short
intervals

Theorem (B., Bary-Soroker)

Let B > 0 and f0 ∈M(k ,q), 2 ≤ m < k , I(f0,m). Then,∑
f∈I(f0,m)

1(L1(f )) · · ·1(Ln(f )) =
#I(f0,m)∏n

i=1 deg(Li(f0))
(1 + OB(q−1/2))

holds uniformly as q −→∞ odd, for:

L1(X ), . . . ,Ln(X ) distinct primitive linear functions
The Li ’s are of bounded height, i.e.,
max{deg ai(t),deg bi(t)} ≤ B
1 ≤ n ≤ B
3 ≤ k ≤ B
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Main idea

The main idea is to consider a generic polynomial
F ∈ I(f0,m). This means that we think of such a
polynomial as a polynomial of the form

F(A, t) = f0(t) +
m∑

i=0

Ai t i ∈ Fq[A0, ...,Am][t ]

We are interested in the number of substitutions Ai 7→ ai
where ai ∈ Fq such that Li(F(a0, ...,am, t)), i = 1, ...,n are
all prime polynomials.
Using this idea, the proof is divided into two main parts:

Computing Galois groups.
Counting argument.
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Using this idea, the proof is divided into two main parts:
Computing Galois groups.
Counting argument.
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Computing Galois group

Proposition

Let L1, · · · ,Ln be distinct primitive linear functions and f0 ∈ F[t ]
a monic polynomial of degree k. Let F = f0 +

∑m
j=0 Aj t j where

2 ≤ m < k. Then,

Gal

(
n∏

i=1

Li(F),F(A)

)
=

n∏
i=1

Gal(Li(F),F(A)) = Sk1 × · · · × Skn ,

where ki = deg(Li(f0)).
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Sketch proof of the proposition

Proof:
The splitting fields of Li(F) are linearly disjoint.

Gal(Li(F),F(A)) = Ski where ki = deg(Li(f0))

Li (F) is separable in t and irreducible in the ring F(A)[t ].
The Galois group of Li (F) over F(A) is doubly transitive.
The Galois group of Li (F) contains a transposition.
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Counting argument

Proposition (An explicit Chebotarev density theorem)
Let

H(A, t) = F1 · · · Fn ∈ Fq[A0, ...,Am][t ]

Assume that Gal(H,Fq(A)) = Sk1 × · · · × Skn where
ki = degt (Fi). Then,

∑
a∈Fm+1

q

1(F1(a, t)) · · ·1(Fn(a, t)) =
qm+1∏n

i=1 ki
(1 + Om,B(q−1/2))
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