NUMBER THEORETICAL TOPICS IN INVERSE GALOIS THEORY

EXERCISES AND PROBLEMS

PIERRE DÈBES

Problem 1 — Show that every finite abelian group G is the Galois group of some field extension of \mathbb{Q} .

Hints and comments — Consider first the special case that G is cyclic: use cyclotomic extensions and the lemma that for each integer $m \neq 0$, there are infinitely many integers that are congruent to 1 modulo m. (see [Dèb09, §2.1.2]).

Problem 2 — Show that 16 is an 8th power in \mathbb{Z}_p for every prime $p \neq 2$ and is not an 8th power in \mathbb{Z}_2 .

Hints and comments — Note that

$$X^{8} - 16 = (X^{2} - 2)(X^{2} + 2)((X - 1)^{2} + 1)((X + 1)^{2} + 1)$$

This example shows that the local-global map

$$H^1(\mathbb{Q}, \mathbb{Z}/8\mathbb{Z}) \to \prod_{p \neq 2} H^1(\mathbb{Q}_p, \mathbb{Z}/8\mathbb{Z})$$

is not injective. It follows that the local-global map

$$H^2(\mathbb{Q}, \mathbb{Z}/8\mathbb{Z}) \to \prod_{p \neq 2} H^2(\mathbb{Q}_p, \mathbb{Z}/8\mathbb{Z})$$

is not surjective. More precisely, there is no Galois extension E/\mathbb{Q} of group $\mathbb{Z}/8\mathbb{Z}$ such that the Frobenius at p = 2 is of order 8, or equivalently, such that $E\mathbb{Q}_2/\mathbb{Q}_2$ is unramified of degree 8.

Problem 3 — Given a field k and a finite separable extension F/k(T), show that the following assertions are equivalent: (i) $F \cap \overline{k} = k$, (ii) for every finite extension E/k, [FE : E(T)] = [F : k(T)], (iii) $[F\overline{k} : \overline{k}(T)] = [F : k(T)]$. Hints and comments — see [Dèb09, §2.3.1].

Date: July 12, 2015.

Problem 4 — Show that for $k = \mathbb{Q}$, or more generally for a hilbertian field k, if a finite group G is a Galois group over k(T), then it is a Galois group over k.

Hints and comments — see [Dèb09, $\S2.2.4$].

Problem 5 — Let F/k(T) be a degree *n* extension with F/k regular. Assume that the Galois closure $\widehat{F}/k(T)$ is of group S_n . Show that \widehat{F}/k is regular. Give an example for which the conclusion fails if the assumption if removed.

Problem 6 — Let G be a finite group and H be a subgroup of G. Denote by U the union of all conjugate subgroups gHg^{-1} of H by elements $g \in G$.

(a) Show that if $\{g_1, \ldots, g_n\}$ are representatives of the left cosets of G modulo H, then $U \setminus \{1\} = \bigcup_{i=1}^n (g_i H g_i^{-1} \setminus \{1\})$.

(b) Deduce that $\operatorname{card}(U) \leq |G| - [G:H] + 1$

(c) (Jordan's lemma) Let H be a subgroup of G that contains at least one element from each conjugacy class of G. Show that H = G.

(d) Let G be a transitive subgroup of S_n with n > 1. Show that there exists an element of G with no fixed point.

Problem 7 — (Hensel's lemma)

(a) Show that $X^2 + 1$ has a root in $\mathbb{Z}_5 = \lim_{n \to \infty} \mathbb{Z}/5^n \mathbb{Z}$.

(b) Let (A, v) be a complete discrete valuation ring with residue field κ . Let $f \in A[X]$ be a polynomial such that the polynomial $\overline{f} \in \kappa[X]$ obtained by reducing the coefficients of f modulo the valuation ideal has a simple root $\lambda \in \kappa$. Show that f has a root $x \in A$.

Hints and comments — see [Dèb09, $\S1.2.2.7$].

Problem 8 — Let $P \in \mathbb{Z}[Y]$ be a polynomial, irreducible in $\mathbb{Q}[Y]$. Show that there exist infinitely many primes p such that the polynomial P reduced modulo p has no roots in \mathbb{F}_p .

Hints and comments — Use the classical density Tchebotarev theorem.

Problem 9 — Let $P \in \mathbb{Z}[T, Y]$ be a polynomial, irreducible in $\overline{\mathbb{Q}(T)}[Y]$. Assume that the splitting field $\widehat{F}/\mathbb{Q}(T)$ of the polynomial P (in Y) is a regular Galois extension. Show that for all but finitely many primes p, the following property holds: there is a coset $p\mathbb{Z} + b \subset \mathbb{Z}$ such that for each $t_0 \in p\mathbb{Z} + b$, the polynomial $P(t_0, Y)$ has no root in \mathbb{Q} .

Hints and comments — Use the function field Tchebotarev theorem.

 $\mathbf{2}$

Problem 10 — Let $\mathbf{t} \subset \mathbb{P}^1(\overline{\mathbb{Q}})$ be a finite subset, invariant under the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Set $B^* = \mathbb{P}^1 \setminus \mathbf{t}$ and let p be a prime number. (a) Define the natural restriction map $r_p : \pi_1(B^*, t)_{\mathbb{Q}_p} \to \pi_1(B^*, t)_{\mathbb{Q}}$. (b) Let $F/\mathbb{Q}(T)$ be a regular Galois extension of group G and $\phi : \pi_1(B^*, t)_{\mathbb{Q}} \to G$ be its fundamental group representation. Show that the map $\phi \circ r_p : \pi_1(B^*, t)_{\mathbb{Q}_p} \to G$ is a fundamental group representation of the regular Galois extension $F\mathbb{Q}_p/\mathbb{Q}_p(T)$.

Problem 11 — Let $n \ge 1$ be an integer and

 $f(Y) = Y^n + a_1 Y^{n-1} + \dots + a_n$

be a polynomial with coefficients $a_i \in \mathbb{Q}$. Set

$$P(T,Y) = f(Y) - T$$

and denote by $\mathcal{Y} \in \overline{\mathbb{Q}(T)}$ a root of the polynomial P(T,Y) (in Y).

(a) Show that P(T, Y) is irreducible in $\overline{\mathbb{Q}}(T)[Y]$.

Set $E = \overline{\mathbb{Q}}(T)(\mathcal{Y})$, denote the Galois closure of the extension $E/\overline{\mathbb{Q}}(T)$ by $\widehat{E}/\overline{\mathbb{Q}}(T)$ and its Galois group by G.

(b) Recall how G can be viewed as a transitive subgroup of S_n .

From now on, assume that f satisfies the following conditions:

(i) The roots $\beta_1, \ldots, \beta_{n-1} \in \mathbb{Q}$ of the derivative f'(Y) are simple. (ii) $f(\beta_i) \neq f(\beta_j)$ for $i \neq j$.

(c) Show that the branch points of the extension $E/\mathbb{Q}(T)$ are in the set $\{f(\beta_1), \ldots, f(\beta_{n-1}), \infty\}$.

(d) Show that for i = 1, ..., n-1 we have $f(Y) - f(\beta_i) = (Y - \beta_i)^2 g_i(Y)$ with $g_i(Y) \in \overline{\mathbb{Q}}[Y]$ separable and such that $g_i(\beta_i) \neq 0$.

(e) Show that, for i = 1, ..., n - 1, there are n - 2 unramified points and one ramified point in the extension $E/\overline{\mathbb{Q}}(T)$ above $f(\beta_i)$, and that every inertia group is generated by a 2-cycle.

(f) Show that if $v_{1/T}$ is the unique prolongation of the 1/T-adic valuation from $\overline{\mathbb{Q}}((1/T))$ to the algebraic closure $\overline{\overline{\mathbb{Q}}((1/T))}$, then we have $v_{1/T}(\mathcal{Y}) = -1/n$.

(g) Show that, above ∞ , there is a totally ramified point in the extension $E/\overline{\mathbb{Q}}(T)$, and that every inertia group is generated by a n-cycle.

(h) Denote by R the sum of all integers $e(\mathcal{P}) - 1$ where \mathcal{P} ranges over all the points/places of E and $e(\mathcal{P})$ is the corresponding ramification index. Check that

$$-2[E:\overline{\mathbb{Q}}(T)] + R = -2$$

PIERRE DÈBES

(that is, via the Riemann-Hurwitz formula, the function field E is of genus 0) and that

$$E = \overline{\mathbb{Q}}(\mathcal{Y})$$

(that is, E a pure transcendental extension of $\overline{\mathbb{Q}}$).

(i) Show that the group G is generated by the inertia groups above the points $f(\beta_1), \ldots, f(\beta_{n-1})$. Conclude that $G = S_n$ (by using that a transitive subgroup of S_n that is generated by 2-cycles (or, more generally by cycles of prime length) is equal to S_n).

References

[Dèb09] Pierre Dèbes. Arithmétique des revêtements de la droite. 2009. at http://math.univ-lille1.fr/~pde/ens.html.

E-mail address: Pierre.Debes@math.univ-lille1.fr

LABORATOIRE PAUL PAINLEVÉ, MATHÉMATIQUES, UNIVERSITÉ LILLE 1, 59655 VILLENEUVE D'ASCQ CEDEX, FRANCE

4