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Let E/Q(T ) be a (non-trivial) regular finite Galois extension.

E En

T = n ∈ N \ {0}
//

Q(T ) Q

Given a positive integer n, let

Ram(n)

be the number of ramified prime numbers in the specialization
En/Q of E/Q(T ) at n.
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Three kinds of results:

(1) results for suitable positive integers n,

(2) results for a given positive integer n,

(3) statistical properties of the function Ram (joint work with
Bary-Soroker).
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Grunwald Problem. Let
- G be a (non-trivial) finite group,
- S a finite set of prime numbers,
- for each prime number p ∈ S, Fp/Qp a finite Galois extension
with Galois group contained in G .
Can we find some finite Galois extension F/Q with group G such
that the completion at each prime number p ∈ S is the extension
Fp/Qp?

The Grunwald Problem
- holds if G has odd order (Grunwald in the cyclic case, Neukirch
in the general case),
- does not hold if G = Z/8Z (Wang).
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Proposition

Let G be a (non-trivial) finite group. Assume that the Grunwald
Problem holds for the finite group G . Then the following holds:

(∗) given a positive integer m, there exists at least one Galois
extension F/Q with group G and at least m ramified primes.

It is not clear that any finite group G which occurs as a Galois
group over Q satisfies condition (∗). For example, given a
“general” prime number p, the group PSL2(Fp) is a Galois group
over Q but all known realizations of this group over Q ramify only
at 2 and p (Zywina).
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Theorem (L.)

Let E/Q(T ) be a (non-trivial) regular finite Galois extension with
group G . Then, given a finite set S of large enough “suitable”
primes (depending on the extension E/Q(T )), there exist infinitely
many positive integers n such that

(1) Gal(En/Q) = G ,

(2) the extension En/Q ramifies at each prime of S.

Moreover, for at least one such n, we can require the discriminant
dEn of En/Q to satisfy∏

p∈S
p ≤ |dEn | ≤ α ·

∏
p∈S

pβ

for some positive constants α and β (depending only on E/Q(T )).
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Remark

(1) A prime p is “suitable” if p satisfies some necessary condition
to ramify in at least one specialization of E/Q(T ) at a positive
integer. This necessary condition is related to the arithmetic of the
branch points of E/Q(T ).

(2) At least infinitely many primes are “suitable”. Hence, given a
positive integer m, there exist positive integers n such that
Gal(En/Q) = G and Ram(n) ≥ m (in particular, condition (∗)
holds for any non-trivial regular Galois group over Q).

(3) If E/Q(T ) has at least one branch point in Q, then any prime
is “suitable”. Examples: abelian groups of even order, Sn (n ≥ 2),
An (n ≥ 4), many non abelian simple groups...
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Let N ≥ 3 and E/Q(T ) be the splitting extension of the trinomial
Y N − Y N−1 − T . The extension E/Q(T ) has Galois group SN , is
regular and has branch points 0, ∞ and −(N − 1)N−1/NN .

Corollary

Let S be a finite set of primes p > N. Then there exist infinitely
many positive integers n such that

(1) Gal(En/Q) = SN ,

(2) the extension En/Q ramifies at each prime of S.

Theorem (Bary-Soroker and Schlank)

There exist positive integers n such that

(1) Gal(En/Q) = SN ,

(2) Ram(n) ≤ 3.
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Natural question. What can we expect for a given positive
integer n (such that the specialization En/Q has Galois group G )?
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Proposition

Let E/Q(T ) be a regular finite Galois extension. Then there exists
some positive real number C (depending only on the extension
E/Q(T )) such that

Ram(n) ≤ C · log(n)

for any positive integer n ≥ 2 (not a branch point).
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Proof.

Let P(T ,Y ) ∈ Z[T ][Y ] be a monic separable polynomial with
splitting field E over Q(T ) and ∆(T ) ∈ Z[T ] its discriminant. If n
is large enough, the specialization En/Q of E/Q(T ) at n is the
splitting extension over Q of P(n,Y ). We then obtain that any
prime p ramifying in En/Q divides ∆(n). Hence

Ram(n) ≤ ω(∆(n)) := |{p : p |∆(n)}|

As any positive integer m satisfies trivially m ≥ 2ω(m), we have

Ram(n) ≤ log(|∆(n)|)
log 2

It then remains to use that |∆(n)| ≤ α · nβ for some positive real
numbers α and β (not depending on n) to finish the proof.
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Next step: study lim
n→∞

Ram(n), give an asymptotic as n→∞...

Example

Take E/Q(T ) = Q(
√

T )/Q(T ). For any positive integer n, one
has En/Q = Q(

√
n)/Q.

(1) If n = �, then Ram(n) = 0.

(2) If n is a prime, then Ram(n) = 1 or 2.

(3) If n = p1 . . . ps with n �-free, then Ram(n) = s or s + 1.

Conclusion: it seems to be difficult to say more about the number
Ram(n) for a given positive integer n.
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Let E/Q(T ) be a (non-trivial) regular finite Galois extension.

Theorem (Bary-Soroker and L.)

(1) One has

1

x

∑
0<n≤x

Ram(n) ∼
x→∞

r log log(x)

with r the number of branch points in Q modulo the action of GQ.

(2) One has

1

x

∑
0<n≤x

(
Ram(n)− r log log(x)

)2 ∼
x→∞

r log log(x)
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Theorem (Bary-Soroker and L.)

For any real number a, one has

lim
x→∞

1

x

∣∣∣∣∣
{

0 < n ≤ x :
Ram(n)− r log log(x)√

r log log(x)
≤ a

}∣∣∣∣∣ = I (a)

with

I (a) =
1√
2π

∫ a

−∞
e

−t2

2 dt
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The same results hold if we consider the set of all positive integers
n such that 0 < n ≤ x and Gal(En/Q) = G (with
G = Gal(E/Q(T ))).

This follows from the main result and the following two facts:

(1) Ram(n) =
n→∞

O(log(n)),

(2) N(x) := |{n : 0 < n ≤ x ∧Gal(En/Q) < G}| =
x→∞

O(
√

x).
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In particular, from

1

x

∑
0<n≤x

Gal(En/Q)=G

Ram(n) ∼
x→∞

r log log(x)

we reobtain the following:

Given a positive integer m, there exist positive integers n such that
Gal(En/Q) = G and Ram(n) ≥ m.
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Let {t1, . . . , tr} be a set of representatives of the branch points of
the extension E/Q(T ) lying in Q under the action of the absolute
Galois group of Q.

For each index i ∈ {1, . . . , r}, denote the ramification index of
〈T − ti 〉 in EQ/Q(T ) by ei and let Pi (T ) ∈ Z[T ] be an irreducible
polynomial such that Pi (ti ) = 0. Finally set PE (T ) =

∏r
i=1 Pi (T ).
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Proposition (based on Beckmann)

There exists some positive real number p0 (depending only on the
extension E/Q(T )) satisfying the following. For any prime p > p0

and any positive integer n, not a branch point, the following two
conditions are equivalent:

(1) p ramifies in the specialization En/Q of E/Q(T ) at n,

(2) there exists a unique index i ∈ {1, . . . , r} such that p divides
Pi (n) and vp(Pi (n)) is not a multiple of ei .
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This proposition is a natural motivation to introduce the following
definition.

Definition

Given two positive integers a and n, let

ma(n)

be the number of primes p such that vp(n) is a non-zero multiple
of a.

Remark: one has m1(n) = ω(n) for any positive integer n.
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Conjoining the proposition and the definition provides the following.

Proposition

There exists some real number C ≥ 1 (depending only on the
extension E/Q(T )) such that

∣∣∣Ram(n)− ω(PE (n)) +
r∑

i=1

mei (Pi (n))
∣∣∣ ≤ C

for any positive integer n (not a branch point).
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By the previous proposition, one has

1

x

∑
0<n≤x

Ram(n) =
1

x

∑
0<n≤x

ω(PE (n))

−
r∑

i=1

1

x

∑
0<n≤x

mei (Pi (n))

+ O(1)

By some classical results, one has

1

x

∑
0<n≤x

ω(PE (n)) ∼
x→∞

r log log(x)
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It then remains to prove the following result.

Proposition

Let a be an integer ≥ 2 and P(T ) ∈ Z[T ] a non-constant
polynomial. Then there exists some positive real number C (P)
(depending only on the polynomial P(T )) such that∑

0<n≤x
ma(P(n)) ≤ C (P) · x

for any positive integer x.

Remark

(1) The proposition does not hold if a = 1.

(2) Key-point in the proof: a ≥ 2 =⇒ ma(P(n)) ≤ {p : p2|P(n)}.
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First we need to generalize the previous proposition.

Proposition

Let a be an integer ≥ 2, k a positive integer and P(T ) ∈ Z[T ] a
non-constant polynomial. Then there exists some positive real
number C (P, k) (depending only on the polynomial P(T ) and the
integer k) such that∑

0<n≤x
mk

a (P(n)) ≤ C (P, k) · x

for any positive integer x.
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Conjoining this proposition and the last proposition from the first
part of the proof.

Proposition

Given a positive integer k, there exists some positive real number
C (k) (depending only on the integer k and the extension E/Q(T ))
such that ∣∣∣∣ ∑

0<n≤x

(
Ram(n)− ω(PE (n))

)k ∣∣∣∣ ≤ C (k) · x

for any positive integer x.
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By a result of Halberstam (1956), one has

lim
x→∞

1

x

∑
0<n≤x

(
ω(PE (n))− r log log(x)√

r log log(x)

)k

=
1√
2π

∫ +∞

−∞
tke

−t2

2 dt

for any positive integer k .

Conjoining this and the previous proposition provides

lim
x→∞

1

x

∑
0<n≤x

(
Ram(n)− r log log(x)√

r log log(x)

)k

=
1√
2π

∫ +∞

−∞
tke

−t2

2 dt

for any positive integer k .

Apply this result with k = 1 and k = 2 to get the results about the
mean value and the variance respectively. It then remains to use
the method of moments to get the result about the probability
distribution.
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