Mathematik und Statistik

Prof. Dr. Dieter Hoffmann
Dr. Lorna Gregory
Katharina Dupont

Lineare Algebra I
 Wiederholungsblatt

Solution W1

See your lecture notes.

Solution W2

(a) TRUE Suppose $v, w \in V$. Then $f(v)=f(w)$ if and only if $f(v-w)=0$, since f is linear. If ker $f=0$ then $v-w=0$, so $v=w$. Hence f is injective. Conversely, if f is injective then $f(v)=0$ implies $v=0$. So ker $f=0$.
(b) FALSE For any scalar product $\langle\cdot, \cdot\rangle,\langle v, v\rangle$ takes only non-negative values.
(c) TRUE Every basis for U can be extended to a basis for V.
(d) FALSE For instance, a 1×1 matrix can not be multiplied by a 2×2 matrix.
(e) TRUE If f were linear, then for all $v \in V, f(0)=f(0 . v)=0 . f(v)=0$.
(f) FALSE Take $V=\mathbb{R}^{2}$ as an \mathbb{R}-vector space and $v_{1}=(0,0), v_{2}=(1,0)$. Then v_{2} is not a linear combination of v_{1}.
(g) TRUE Since $\left\{v_{1}, \ldots, v_{n}, v_{n+1}\right\}$ has $n+1$ elements and $\operatorname{dim} V=n$, there exists $0<$ $i \leq n+1$ such that v_{i} is a linear combination of elements in $\left\{v_{1}, \ldots, v_{n+1}\right\} \backslash\left\{v_{i}\right\}$. The set $\left\{v_{1}, \ldots, v_{n+1}\right\} \backslash\left\{v_{i}\right\}$ spans V. Since $\operatorname{dim} V=n,\left\{v_{1}, \ldots, v_{n+1}\right\} \backslash\left\{v_{i}\right\}$ is a basis for V. Therefore $\left\{v_{1}, \ldots, v_{n+1}\right\} \backslash\left\{v_{i}\right\}$ is linearly independent.
(h) TRUE Suppose V, U, W are K-vector spaces and $f: V \rightarrow U, g: U \rightarrow W$ are linear maps. Let $u, v \in V$ and $\lambda \in K$. Then
$(g \circ f)(u+\lambda . v)=g(f(u+\lambda v))=g(f(u)+\lambda . f(v))=g(f(u))+\lambda . g(f(v))=(g \circ f)(u)+\lambda .(g \circ f)(v)$.
So $g \circ f$ is linear.
(i) TRUE See lecture notes.
(j) TRUE See lecture notes.
(k) TRUE Check group axioms.
(I) FALSE Let $V=\mathbb{R}$ as an \mathbb{R}-vector space. No basis contains both 1 and 2 since they are linearly dependent but $1 \neq 2$.
(m) TRUE Any set containing the zero vector in linearly dependent since $1.0=0$.
(n) FALSE Let $V=\mathbb{R}$ as an \mathbb{R}-vector space. The vectors $1,2,3$ span (generate) V but V has dimension 1.
(o) FALSE For any vector space V and any non-zero $w \in V$ the function $f(v)=w-v$ is not linear since $f(0)=w \neq 0$.
(p) TRUE Since x, y, z are linearly dependent, there exists $a, b, c \in K$ not all zero such that $a . x+b . y+c . z=0$. Since x, y are linearly independent, $c \neq 0$. Therefore $z=$ $-a / c . x-b / c . y$.
(q) FALSE Let $V=\mathbb{R}^{2}$ and $x=(1,0), y=(0,1), z=(0,1)$. Then x, y are linearly independent, x, y, z are linearly dependent and x is not in the span of y, z.
(r) TRUE Suppose x, y are linearly dependent. Then there exists $a, b \in \mathbb{K}$ (with at least one of a, b non-zero) such that $a x+b y=0$. If $a \neq 0$ then $x=-b / a y$. If $b \neq 0$ then $y=-a / b x$.
(s) TRUE For any such $f, \operatorname{dim} \operatorname{ker} f+\operatorname{dimim} f=\operatorname{dim} V$. So $\operatorname{dim} f \leq \operatorname{dim} V$.
(t) TRUE
(u) FALSE Let $V=\mathbb{R}^{2}$ and U be the space spanned by $(1,1)$. Then $(1,0),(0,1)$ is a basis for V and neither vector is contained in U.
(v) TRUE Suppose $v \in V$. Then $f(v) \in \operatorname{im} f$. So $f(v) \in \operatorname{ker} f$. So $f^{2}(v)=f(f(v))=0$. Therefore $f^{2}=0$.
(w) TRUE See Bemerkung 2.1.11.
(x) TRUE Suppose that $v \in V$ and v is non-zero. Then $\langle v, v\rangle>0$. Let $\langle v, v\rangle=t$. For any strictly positive $s \in \mathbb{R}, s / t$ has a square root in \mathbb{R}. We have that $\langle\sqrt{s / t} v, \sqrt{s / t} v\rangle=s$ and $\langle 0,0\rangle=0$. So $\langle v, v\rangle$ takes all positive values in \mathbb{R}.

Solution W3

(i) The subset U is not a subspace, since U does not contain the zero vector.
(ii) The subset U is a subspace. For all $x \in \mathbb{R}, x^{2} \geq 0$. Therefore $x_{1}^{2} \leq 0$ implies $x_{1}=0$. Let $x, y \in U$ and $r \in \mathbb{R}$. Then

$$
x=\left(\begin{array}{c}
0 \\
x_{2} \\
x_{3}
\end{array}\right) \text { and } y=\left(\begin{array}{c}
0 \\
y_{2} \\
y_{3}
\end{array}\right)
$$

for some $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$. So

$$
x+r y=\left(\begin{array}{c}
0 \\
x_{2} \\
x_{3}
\end{array}\right)+r\left(\begin{array}{c}
0 \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
x_{2}+r y_{2} \\
x_{3}+r y_{3}
\end{array}\right) \in U
$$

Therefore U is a subspace of \mathbb{R}^{3}.

A basis for U is

$$
\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

The dimension is 2 .
(iii) The subset U is a subspace. Let $x, y \in U$ and $r \in \mathbb{R}$. There exists $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$ such that

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1}+x_{2}
\end{array}\right) \text { and } y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{1}+y_{2}
\end{array}\right) .
$$

So

$$
x+r y=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1}+x_{2}
\end{array}\right)+r\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{1}+y_{2}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+r y_{1} \\
x_{2}+r y_{2} \\
x_{1}+x_{2}+r\left(y_{1}+y_{2}\right)
\end{array}\right) \in U
$$

since $\left(x_{1}+r y_{1}\right)+x_{2}+r y_{2}=x_{1}+x_{2}+r\left(y_{1}+y_{2}\right)$.
A basis for U is

$$
\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

(iv) The subset U is not a subspace, since $(1,0,0)$ and $(0,1,0)$ are in U but $(1,1,0)$ is not.
(v) The subset U is not a subspace, since $(2,0,0)$ is in U but $(4,0,0)$ is not.
(vi) This question was modified so that $\alpha\left(x_{1}, x_{2}, x_{3}\right)=\left(0, x_{1}-2 x_{2}, x_{3}-x_{2}, x_{2}-4 x_{1}\right)$. The kernel of a linear map is always a subspace. A vector $\left(x_{1}, x_{2}, x_{3}\right)$ is in the kernel of α if and only if $x_{1}=2 x_{2}, x_{3}=x_{2}$ and $x_{2}=4 x_{1}$. It is easy to see that this implies that $x_{1}=x_{2}=x_{3}=0$. Therefore the kernel is the zero subspace.

Solution W4

(a) It is equivalent to show that if $u, \alpha u, \alpha^{2} u, \ldots, \alpha^{n-1} u$ are linearly dependent then $\alpha^{n-1}=0$. Suppose that $b_{i} \in \mathbb{K}$ are such that $\sum_{i=0}^{n-1} b_{i} \alpha^{i} u=0$ and not all b_{i} are zero. Let j be least such that $b_{j} \neq 0$. By applying α^{n-1+j} to $\sum_{i=0}^{n-1} b_{i} \alpha^{i} u$, we get $b_{j} \alpha^{n-1} u=0$. Hence $\alpha^{n-1} u=0$, since $b_{j} \neq 0$.
(b) Let u_{1}, \ldots, u_{n+1} be a basis for V. The map $\alpha: V \rightarrow V$, defined by $\alpha\left(\sum_{i=1}^{n+1} b_{i} u_{i}\right)=$ $\sum_{i=1}^{n} b_{i} u_{i+1}$ is a linear map and satisfies the required properties.

Solution W5

(a) There are exactly 3 possibilities for the value of $a b$. If $a b=a$ then $b=e$. If $a b=b$ then $a=e$. So $a b=e$.
(b) If $a^{2}=a$ then $a=e$. If $a^{2}=e$ then $a a b=b$. So $a=b$. Thus $a^{2}=b$. Similarly $b^{2}=a$. Since right inverses are left inverses, $b a=e$.

	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

Solution W6

Since \mathbb{R} is a field, commutativity and associativity of addition and multiplication are inherited by $\mathbb{Q}[\sqrt{3}]$ from \mathbb{R}. Distributivity is also inherited from \mathbb{R}. The element $0+0 \sqrt{3}$ is the zero element and the element $1+0 \sqrt{3}$ is the multiplicative identity (to prove this, either do a simple computation or argue that these elements inherit their required properties from \mathbb{R}). If $a, b \in \mathbb{Q}$ then $a+b \sqrt{3}$ has additive inverse $(-a)+(-b) \sqrt{3}$.
It remains to show that every non-zero element in $\mathbb{Q}[\sqrt{3}]$ has a multiplicative inverse in $\mathbb{Q}[\sqrt{3}]$. In the following proof we will assume that $\sqrt{3} \notin \mathbb{Q}$. (incase you have not seen a proof of this, one is included at the end of this solution)
First note that, for all $a, b \in \mathbb{Q}, a+b \sqrt{3}=0$ if and only if $a=b=0$. This is because if $b \neq 0$ and $a+b \sqrt{3}=0$ then $-a / b=\sqrt{3}$, contradicting the fact that $\sqrt{3} \notin \mathbb{Q}$. Therefore $b=0$, so $a=0$.
Suppose that $a+b \sqrt{3} \neq 0$ and $a, b \in \mathbb{Q}$. Then $a+(-b) \sqrt{3} \neq 0$. We are now ready to show that the multiplicative inverse (in \mathbb{R}) of $a+b \sqrt{3}$ is in $\mathbb{Q}[\sqrt{3}]$. Consider

$$
\frac{1}{a+b \sqrt{3}}=\frac{a-b \sqrt{3}}{(a+b \sqrt{3})(a-b \sqrt{3})}=\frac{a}{a^{2}-3 b^{2}}+\frac{-b}{a^{2}-3 b^{2}} \sqrt{3}
$$

Proof that $\sqrt{3}$ is irrational:

Claim: Let $a \in \mathbb{N}$. Then 3 divides a^{2} implies 3 divides a.
It is equivalent to show that a not divisible by 3 implies a^{2} is not divisible by 3 .
Suppose 3 does not divide a. Then $a=3 n+1$ or $a=3 n+2$ for some $n \in \mathbb{N}$. If $a=3 n+1$ then $a^{2}=3\left(3 n^{2}+2 n\right)+1$, which is not divisible by 3 . If $a=3 n+2$ then $a^{2}=3\left(3 n^{2}+4 n+1\right)+1$ which is not divisible by 3 . So we have proved the claim.
We are now ready to prove that $\sqrt{3}$ is irrational. Suppose, for a contradiction that $\sqrt{3}=a / b$ for integers a and b. Since $\sqrt{3}$ is positive in \mathbb{R}, we may assume that a and b are positive. By dividing through by the highest common factor of a and b, we may assume that a and b have highest common factor 1 . Squaring both side of $\sqrt{3}=a / b$ we get that $3 b^{2}=a^{2}$. Therefore 3 divides a^{2} and hence, using the claim, 3 divides a. Let $a_{1} \in \mathbb{N}$ be such that $3 a_{1}=a$. Then $3 b^{2}=9 a_{1}^{2}$. Thus $b^{2}=3 a_{1}^{2}$. So 3 divides b^{2} and hence 3 divides b. This contradicts our assumption that a and b have highest common factor 1 . Therefore $\sqrt{3}$ is irrational.

Solution W7

Let

$$
u_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), u_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), u_{3}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

and let e_{1}, e_{2}, e_{3} be the standard basis for \mathbb{R}^{3}. Then

$$
u_{1}=e_{2}+e_{3}, u_{2}=e_{1}+e_{3}, u_{3}=e_{1}+e_{2} .
$$

So the matrix

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

takes a vector written in terms of u_{1}, u_{2}, u_{3} and writes it in terms of e_{1}, e_{2}, e_{3}. Now let

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right), v_{3}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right), v_{4}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

and let $e_{1}, e_{2}, e_{3}, e_{4}$ be the standard basis for \mathbb{R}^{4}. Then

$$
e_{1}=v_{1}, e_{2}=-v_{1}+v_{2}, e_{3}=-v_{2}+v_{3}, e_{4}=-v_{3}+v_{4} .
$$

So the matrix

$$
\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

takes a vector written in terms of $e_{1}, e_{2}, e_{3}, e_{4}$ and writes it in terms of $v_{1}, v_{2}, v_{3}, v_{4}$. Thus α in terms of $\left(u_{1}, u_{2}, u_{3}\right)$ and $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ has matrix representation

$$
\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 2 & 3 \\
3 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
-3 & 0 & -1 \\
-2 & -2 & 0 \\
5 & 0 & -1 \\
0 & 3 & 3
\end{array}\right) .
$$

Solution W8

We have that $V_{1} \cap V_{2} \subset V_{1} \subset V_{1}+V_{2}$. Therefore

$$
\operatorname{dim} V_{1} \cap V_{2} \leq \operatorname{dim} V_{1} \leq \operatorname{dim} V_{1}+V_{2}=\operatorname{dim} V_{1} \cap V_{2}+1
$$

So either $\operatorname{dim} V_{1}=\operatorname{dim} V_{1} \cap V_{2}$, in which case $V_{1}=V_{1} \cap V_{2}$ or $\operatorname{dim} V_{1}=\operatorname{dim} V_{1}+V_{2}$, so $V_{1}=V_{1}+V_{2}$.
If $V_{1}=V_{1} \cap V_{2}$ then $V_{1} \subset V_{2}$. So $V_{2}=V_{1}+V_{2}$. Conversely, if $V_{1}=V_{1}+V_{2}$ then $V_{1} \supset V_{2}$. So $V_{2}=V_{1} \cap V_{2}$.

Solution W9

(a) First note that, if $\langle x, y\rangle=0$ then $\langle y, x\rangle=\overline{\langle x, y\rangle}=0$. Suppose $\langle x, y\rangle=0$. Then

$$
\begin{gathered}
\|x+y\|^{2}=\langle x+y, x+y\rangle=\langle x, x+y\rangle+\langle y, x+y\rangle= \\
=\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle=\langle x, x\rangle+\langle y, y\rangle=\|x\|^{2}+\|y\|^{2} .
\end{gathered}
$$

(b) From the computation above, we see that $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$ if and only if $\langle x, y\rangle+$ $\langle y, x\rangle=0$. If $K=\mathbb{R}$ then $\langle x, y\rangle=\langle y, x\rangle$. So $\langle x, y\rangle+\langle y, x\rangle=0$ if and only if $2\langle x, y\rangle=0$ if and only if $\langle x, y\rangle=0$. So, when $\mathbb{K}=\mathbb{R}$, the converse holds.

When $\mathbb{K}=\mathbb{C}$ the converse does not hold. Let $V=\mathbb{C}, x=1, y=i$ and $\langle\cdot, \cdot \cdot\rangle$ the standard scalar product on \mathbb{C}. Then $\langle x, y\rangle=-i$ and $\langle y, x\rangle=i$. So $\langle x, y\rangle+\langle y, x\rangle=0$ but $\langle x, y\rangle \neq 0$.
(c) Suppose that $\|x+y\|=\|x\|+\|y\|$. Then

$$
\|x+y\|^{2}=\langle x+y, x+y\rangle=(\|x\|+\|y\|)^{2}=\langle x, x\rangle+2\|x\|\| \| y \|+\langle y, y\rangle .
$$

Since $\mathbb{K}=\mathbb{R}$,

$$
\|x+y\|^{2}=\langle x, x\rangle+2\langle x, y\rangle+\langle y, y\rangle .
$$

Therefore $2\|x|\|\mid\| y \|=2\langle x, y\rangle$.
Now take $s, t \geq 0$, then

$$
\|s x+t y\|^{2}=s^{2}\|x\|^{2}+2 s t\langle x, y\rangle+t^{2}\|y\|^{2}=\|x\|^{2}+2 s t\|x\|\|y\|+\|y\|^{2}=(s\|x\|+t\|y\|)^{2} .
$$

Therefore $s\|x\|+t\|y\|=\|s x+t y\|$,
The converse direction is obviously true.

