Universität Konstanz Fachbereich Mathematik und Statistik Jun.-Prof. Dr. Arno Fehm Christoph Hanselka SS 2014

Übungen zur Vorlesung Arithmetische Geometrie II

Blatt 1

Aufgabe 50

Seien $K\subseteq L\subseteq M$ Körper mit M|K galoissch. Zeigen Sie: Die natürliche Injektion $\mathrm{Gal}(M|L)\to\mathrm{Gal}(M|K)$ ist eine topologische Einbettung.

Aufgabe 51

Geben Sie ein Beispiel eines inversen Systems nichtleerer topologischer Räume $(X_i)_{i\in I}$ mit $\varprojlim_{i\in I} X_i = \emptyset$.

Aufgabe 52

Wir betrachten die elliptische Kurve

$$E: y^2 = x^3 + x$$

über \mathbb{Q} .

- (a) Bestimmen Sie Δ und j_E sowie die Gruppen E[2], $\bar{E}(\mathbb{F}_3)$ und $\bar{E}(\mathbb{F}_5)$.
- (b) Bestimmen Sie $E(\mathbb{Q})_{tor}$.
- (c) Finden Sie ein $d \in \mathbb{Z}$ für das $E(\mathbb{Q}(\sqrt{d}))$ unendlich ist. (Bemerkung: Man kann zeigen, dass E Rang 0 über \mathbb{Q} hat.)

Aufgabe 53

Sei K ein Zahlkörper, E|K eine elliptische Kurve und $m \geq 2$ eine ganze Zahl. Wiederholen Sie den Beweis (III.7.1-7.13), dass E(K)/mE(K) endlich ist.

Abgabe: bis Mittwoch 30.04.2014, 14 Uhr, in den Briefkasten auf F4.