Übungsblatt 5 zur Linearen Algebra II

Aufgabe 17. Finde für die folgende Matrix $A \in \operatorname{Mat}_5(\mathbb{R})$ eine Matrix $U \in \operatorname{GL}_5(\mathbb{R})$ derart, dass $U^{-1}AU$ in Normalform für nilpotente Matrizen ist (wie in Satz V.6.14), wobei

$$A = \begin{pmatrix} -4 & 12 & 16 & -4 & 7 \\ -4 & 8 & 8 & -4 & 8 \\ 2 & -4 & -4 & 2 & -4 \\ 0 & -2 & -4 & 0 & 1 \\ 0 & 1 & 2 & 0 & 0 \end{pmatrix}.$$

Hinweis: Verwende den Algorithmus aus dem Beweis des Satzes. Außerdem darfst Du benutzen, dass

Sei $U_i = \operatorname{Ker} f_A^i \subseteq \mathbb{R}^5$. Um Rechenarbeit zu sparen, überlege wie man aus obigem jeweils dim U_i ablesen kann und dann leicht (d.h. ohne zu rechnen) Basen der U_i findet.

Aufgabe 18. Sei K ein Körper mit char $K \neq 2$, V ein endlichdimensionaler K-Vektorraum und $f \in \operatorname{End}_K(V)$ mit $f^3 = f$.

(a) Zeige, dass f diagonalisierbar ist.

Hinweis: Du darfst Aufgabe 16 verwenden oder, dass *K* algebraisch abgeschlossen ist.

(b) Gilt dies auch für char K = 2?

Aufgabe 19. Sei $B \in Mat_4(\mathbb{R})$ gegeben durch

$$B = \begin{pmatrix} 1 & 4 & 2 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

- (a) Bestimme die Hauptraumzerlegung für B.
- (b) Bestimme eine Jordan-Normalform von *B*, zusammen mit den entsprechenden Transformationsmatrizen.

Aufgabe 20. Sei $f \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^5)$ mit $\chi_f(t) = (t-3)^2(t-2)^3$ und $(t-2)^2$ teile $P_f(t)$. Gib bis auf Vertauschung der Jordanblöcke alle möglichen Jordan-Normalformen von f an.

Zusatzaufgabe 21.

(a) Sei $P \in \mathbb{R}[t]$ normiert. Zeige unter Verwendung des Fundamentalsatzes der Algebra, dass es lineare Polynome $P_1, \ldots, P_k \in \mathbb{R}[t]$ und quadratische Polynome $Q_1, \ldots, Q_\ell \in \mathbb{R}[t]$ gibt, wobei letztere keine Nullstellen in \mathbb{R} haben, mit $P = \prod_{i=1}^k P_i \prod_{j=1}^\ell Q_j$.

Hinweis: Ist λ eine Nullstelle von P, so auch $\overline{\lambda}$.

(b) Sei V ein \mathbb{R} -Vektorraum mit $0 < \dim V < \infty$ und $f \in \operatorname{End}_{\mathbb{R}}(V)$. Zeige, dass es einen f-invarianten Untervektorraum von V der Dimension 1 oder 2 gibt.

Hinweis: Ist $\chi_f(t) = \prod_j Q_j$ so gilt $Q_1(f) \circ \cdots \circ Q_\ell(f) = 0$. Finde $j \in \{1, \dots, \ell\}$ und $v \in V \setminus \{0\}$ mit $Q_j(f)v = 0$ und betrachete $\operatorname{span}_{\mathbb{R}} \{f^i v \mid i \in \mathbb{N}_0\}$.

(c) Zeige analog zum Beweis von Satz 4.6, dass jede Matrix $A \in \operatorname{Mat}_n(\mathbb{R})$ ähnlich zu einer oberen Blockdreiecksmatrix mit Blockgröße höchstens 2 ist, d.h. einer Matrix der Gestalt

$$\begin{pmatrix} B_1 & * \\ & \ddots & \\ 0 & B_r \end{pmatrix}$$

mit $B_i \in \operatorname{Mat}_1(\mathbb{R})$ oder $B_i \in \operatorname{Mat}_2(\mathbb{R})$ für $i = 1, \dots, r$.

Abgabe bis Mittwoch, den 13. Mai, um 15:00 Uhr in die Zettelkästen neben F411.