Übungsblatt 7 zur Linearen Algebra II

Aufgabe 27. (Gramsche Determinante) Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer \mathbb{R} -Vektorraum.

(a) Sei U ein weiterer endlichdimensionaler \mathbb{R} -Vektorraum und $\varphi \in \operatorname{Hom}_{\mathbb{R}}(U,V)$. Wir definieren $\alpha \colon U \times U \to \mathbb{R}$ durch

$$(x,y) \mapsto \langle \varphi(x), \varphi(y) \rangle$$

Zeige, dass α eine positiv semidefinite symmetrische Bilinearform ist, die genau dann positiv definit (und damit nicht ausgeartet) ist, wenn φ injektiv ist.

(b) Zeige, dass $v_1, \ldots, v_m \in V$ genau dann linear unabhängig sind, wenn ihre *Gramsche Determinante*

$$\det \begin{pmatrix} \langle v_1, v_1 \rangle & \cdots & \langle v_1, v_m \rangle \\ \vdots & \ddots & \vdots \\ \langle v_m, v_1 \rangle & \cdots & \langle v_m, v_m \rangle \end{pmatrix}$$

von Null verschieden ist.

Aufgabe 28. (Polynomiale Regression) Seien $x_0, \ldots, x_n \in \mathbb{R}$ paarweise verschiedene "Stützstellen" und $V := \mathbb{R}[t]_{\leq n}$.

(a) Zeige, dass durch

$$\langle P, Q \rangle := \sum_{i=0}^{n} P(x_i) Q(x_i)$$

eine positiv definite symmetrische Bilinearform auf V gegeben ist.

(b) Sei $d \le n$, $W := \mathbb{R}[t]_{\le d}$ und $P_0, \dots, P_d \in W$ eine Orthonormalbasis von W bezüglich $\langle \cdot, \cdot \rangle$. Weiter seien "Messdaten" $y_0, \dots, y_n \in \mathbb{R}$ gegeben. Zeige, dass

$$P := \sum_{j=0}^{d} \sum_{i=0}^{n} y_{i} P_{j}(x_{i}) P_{j}$$

das eindeutig bestimmte Polynom vom Grad höchstens d ist, für welches die Summe der Fehlerquadrate

$$\sum_{i=0}^{n} (y_i - P(x_i))^2$$

minimal ist. Hinweis: Orthogonale Projektion, Satz des Pythagoras.

(c) Führe für d=n=2 und $(x_0,x_1,x_2)=(0,1,2)$ das Gram-Schmidt-Verfahren für $1,t,t^2$ durch, um eine Orthonormalbasis von W zu erhalten.

Aufgabe 29. Zeige:

(a) $O_1 = \{\pm 1\}$, $U_1 = \{x \in \mathbb{C} \mid |x| = 1\}$ und die Abbildung $\varphi \colon U_1 \to SO_2$, gegeben durch

$$a + bi \mapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

für $a, b \in \mathbb{R}$ mit $a + bi \in U_1$, ist ein (wohldefinierter) Gruppenisomorphismus.

(b)
$$O_2 = \left\{ \begin{array}{ll} \left(\cos \alpha & -\varepsilon \sin \alpha \\ \sin \alpha & \varepsilon \cos \alpha \end{array} \right) \mid \alpha \in [0, 2\pi), \varepsilon \in \{\pm 1\} \right\}$$

Aufgabe 30. Sei $U \in O_3$. Zeige, dass für alle $x, y \in \mathbb{R}^3$ gilt

$$U(x \times y) = \det U \cdot (Ux \times Uy).$$

Insbesondere besteht SO_3 genau aus den orthogonalen Matrizen, die mit dem Kreuzprodukt verträglich sind.

Zusatzaufgabe 31. (Permutationsmatrizen) Zu $\sigma \in S_n$ sei $P_{\sigma} := (\delta_{\sigma(i),j})_{i,j} \in \operatorname{Mat}_n(\mathbb{R})$ die zugehörige *Permutationsmatrix* (siehe III.1.2.(e)). Sei nun $\sigma \in S_n$ fixiert.

- (a) Zeige, dass P_{σ} orthogonal ist.
- (b) Zeige, dass es eine Permutationsmatrix $U \in \operatorname{Mat}_n(\mathbb{R})$, $k \in \mathbb{N}$ und $r_1, \ldots, r_k \in \mathbb{N}$ derart gibt, dass

$$U^t P_{\sigma} U = egin{pmatrix} P_{\sigma_1} & & & \ & \ddots & \ & & P_{\sigma_k} \end{pmatrix}$$

wobei $\sigma_i \in S_{r_i}$ gegeben ist durch $\sigma_i(\ell) \mapsto \begin{cases} \ell+1, & \text{falls } \ell < r_i \\ 1, & \text{falls } \ell = r_i \end{cases}$

Hinweis: Wähle k minimal derart, dass es $1 \le a_1, \ldots, a_k \le n$ gibt mit

$$\{1,\ldots,n\} = \bigcup_{i=1}^k \{ \sigma^{\ell}(a_i) \mid \ell \in \mathbb{N} \}.$$

- (c) Zeige, dass -1 genau dann ein Eigenwert von P_{σ} ist, wenn mindestens eine der Zahlen r_1, \ldots, r_k ungerade ist.
- (d) Fasse $P_{\sigma} \in \operatorname{Mat}_n(\mathbb{C})$ auf und zeige, dass alle Eigenwerte von P_{σ} von der Gestalt $\mu_{r_i}^j$ sind, wobei für $r \in \mathbb{N}$ sei $\mu_r := e^{\frac{2\pi i}{r}}$.

Abgabe bis Donnerstag, den 28. Mai, um 15:00 Uhr in die Zettelkästen neben F411.