
1. Preliminaries

The Hausdorff criterion could be paraphrased by saying that smaller neigh-

borhoods make larger topologies. This is a very intuitive theorem, because

the smaller the neighbourhoods are the easier it is for a set to contain neigh-

bourhoods of all its points and so the more open sets there will be.

Proof.
⇒ Suppose τ ⊆ τ �. Fixed any point x ∈ X, let U ∈ B(x). Then, since U

is a neighbourhood of x in (X, τ), there exists O ∈ τ s.t. x ∈ O ⊆ U . But

O ∈ τ implies by our assumption that O ∈ τ �, so U is also a neighbourhood

of x in (X, τ �). Hence, by Definition 1.1.10 for B�
(x), there exists V ∈ B�

(x)

s.t. V ⊆ U .

⇐ Conversely, let W ∈ τ . Then for each x ∈ W , since B(x) is a base of

neighbourhoods w.r.t. τ , there exists U ∈ B(x) such that x ∈ U ⊆ W . Hence,

by assumption, there exists V ∈ B�
(x) s.t. x ∈ V ⊆ U ⊆ W . Then W ∈ τ �.

1.1.3 Reminder of some simple topological concepts

Definition 1.1.17. Given a topological space (X, τ) and a subset S of X, the
subset or induced topology on S is defined by τS := {S ∩U | U ∈ τ}. That is,
a subset of S is open in the subset topology if and only if it is the intersection
of S with an open set in (X, τ).
Alternatively, we can define the subspace topology for a subset S of X as the
coarsest topology for which the inclusion map ι : S �→ X is continuous.

Note that (S, τs) is a topological space in its own.

Definition 1.1.18. Given a collection of topological space (Xi, τi), where i ∈ I

(I is an index set possibly uncountable), the product topology on the Cartesian
product X :=

�
i∈I Xi is defined in the following way: a set U is open in X

iff it is an arbitrary union of sets of the form
�

i∈I Ui, where each Ui ∈ τi and
Ui �= Xi for only finitely many i.
Alternatively, we can define the product topology to be the coarsest topology
for which all the canonical projections pi : X → Xi are continuous.

Given a topological space X, we define:

Definition 1.1.19.

• The closure of a subset A ⊆ X is the smallest closed set containing A.
It will be denoted by Ā. Equivalently, Ā is the intersection of all closed
subsets of X containing A.

• The interior of a subset A ⊆ X is the largest open set contained in it.
It will be denoted by Å. Equivalently, Å is the union of all open subsets
of X contained in A.
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1.1. Topological spaces

Proposition 1.1.20. Given a top. space X and A ⊆ X, the following hold.
• A point x is a closure point of A, i.e. x ∈ Ā, if and only if each

neighborhood of x has a nonempty intersection with A.
• A point x is an interior point of A, i.e. x ∈ Å, if and only if there exists

a neighborhood of x which entirely lies in A.
• A is closed in X iff A = Ā.
• A is open in X iff A = Å.

Proof. (Sheet 2, Exercise 1)

Example 1.1.21. Let τ be the standard euclidean topology on R. Consider
X := (R, τ) and Y :=

�
(0, 1], τY

�
, where τY is the topology induced by τ on

(0, 1]. The closure of (0, 12) in X is [0,
1
2 ], but its closure in Y is (0,

1
2 ].

Definition 1.1.22. Let A and B be two subsets of the same topological space X.
A is dense in B if B ⊆ Ā. In particular, A is said to be dense in X (or ev-

erywhere dense) if Ā = X.

Examples 1.1.23.

• Standard examples of sets everywhere dense in the real line R (with the
euclidean topology) are the set of rational numbers Q and the one of
irrational numbers R−Q.

• A set X is equipped with the discrete topology if and only if the whole
space X is the only dense set in itself.
If X has the discrete topology then every subset is equal to its own

closure (because every subset is closed), so the closure of a proper subset

is always proper. Conversely, if X is the only dense subset of itself, then

for every proper subset A its closure Ā is also a proper subset of X. Let

y ∈ X be arbitrary. Then to X \ {y} is a proper subset of X and so

it has to be equal to its own closure. Hence, {y} is open. Since y is

arbitrary, this means that X has the discrete topology.

• Every non-empty subset of a set X equipped with the trivial topology
is dense, and every topology for which every non-empty subset is dense
must be trivial.
If X has the trivial topology and A is any non-empty subset of X, then

the only closed subset of X containing A is X. Hence, Ā = X, i.e. A

is dense in X. Conversely, if X is endowed with a topology τ for which

every non-empty subset is dense, then the only non-empty subset of X

which is closed is X itself. Hence, ∅ and X are the only closed subsets

of τ . This means that X has the trivial topology.

Proposition 1.1.24. Let X be a topological space and A ⊂ X. A is dense in
X if and only if every nonempty open set in X contains a point of A.
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1. Preliminaries

Proof. If A is dense in X, then by definition Ā = X. Let O be any nonempty

open subset in X. Then for any x ∈ O we have that x ∈ Ā and O ∈ F(x).

Therefore, by Proposition 1.1.20, we have that O ∩ A �= ∅. Conversely, let

x ∈ X. By definition of neighbourhood, for any U ∈ F(x) there exists an

open subset O of X s.t. x ∈ O ⊆ U . Then U ∩A �= ∅ since O contains a point

of A by our assumption. Hence, by Proposition 1.1.20, we get x ∈ Ā and so

that A is dense in X.

Definition 1.1.25. A topological space X is said to be separable if there exists
a countable dense subset of X.

Example 1.1.26.

• R with the euclidean topology is separable.
• The space C([0, 1]) of all continuous functions from [0, 1] to R endowed
with the uniform topology is separable, since by the Weirstrass approxi-
mation theorem Q[x] = C([0, 1]).

Let us briefly consider now the notion of convergence.

First of all let us concern with filters. When do we say that a filter F on

a topological space X converges to a point x ∈ X? Intuitively, if F has to

converge to x, then the elements of F , which are subsets of X, have to get

somehow “smaller and smaller” about x, and the points of these subsets need

to get “nearer and nearer” to x. This can be made more precise by using

neighborhoods of x: we want to formally express the fact that, however small

a neighborhood of x is, it should contain some subset of X belonging to the

filter F and, consequently, all the elements of F which are contained in that

particular one. But in view of Axiom (F3), this means that the neighborhood

of x under consideration must itself belong to the filter F , since it must contain

some element of F .

Definition 1.1.27. Given a filter F in a topological space X, we say that it
converges to a point x ∈ X if every neighborhood of x belongs to F , in other
words if F is finer than the filter of neighborhoods of x.

We recall now the definition of convergence of a sequence to a point and

we see how it easily connects to the previous definition.

Definition 1.1.28. Given a sequence of points {xn}n∈N in a topological space
X, we say that it converges to a point x ∈ X if for any U ∈ F(x) there exists
N ∈ N such that xn ∈ U for all n ≥ N .

If we now consider the filter FS associated to the sequence S := {xn}n∈N,
i.e. FS := {A ⊂ X : |S \A| < ∞}, then it is easy to see that:
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1.1. Topological spaces

Proposition 1.1.29. Given a sequence of points S := {xn}n∈N in a topolog-
ical space X, S converges to a point x ∈ X if and only if the associated filter
FS converges to x.

Proof. Set for each m ∈ N, set Sm := {xn ∈ S : n ≥ m}. By Definition 1.1.28,

S converges to x iff ∀U ∈ F(x), ∃N ∈ N : SN ⊆ U . As B := {Sm : m ∈ N}
is a basis for FS (see Problem Sheet 1, Exercise 2 c)) , we have that ∀U ∈
F(x), ∃N ∈ N : SN ⊆ U is equivalent to say that F(x) ⊆ FS .

1.1.4 Mappings between topological spaces

Let (X, τX) and (Y, τY ) be two topological spaces.

Definition 1.1.30. A map f : X → Y is continuous if the preimage of any
open set in Y is open in X, i.e. ∀U ∈τY , f−1

(U) := {x ∈ X : f(x) ∈ Y } ∈ τX .
Equivalently, given any point x ∈ X and any N ∈ F(f(x)) in Y , the preimage
f−1

(N) ∈ F(x) in X.

Examples 1.1.31.

• Any constant map f : X → Y is continuous.
Suppose that f(x) := y for all x ∈ X and some y ∈ Y . Let U ∈ τY . If

y ∈ U then f−1
(U) = X and if y /∈ U then f−1

(U) = ∅. Hence, in either

case, f−1
(U) is open in τX .

• If g : X → Y is continuous, then the restriction of g to any subset S

of X is also continuous w.r.t. the subset topology induced on S by the
topology on X.

• Let X be a set endowed with the discrete topology, Y be a set endowed
with the trivial topology and Z be any topological space. Any maps f :

X → Z and g : Z → Y are continuous.

Definition 1.1.32. A mapping f : X → Y is open if the image of any open
set in X is open in Y , i.e. ∀V ∈ τX , f(V ) := {f(x) : x ∈ X} ∈ τY . In the
same way, a closed mapping f : X → Y sends closed sets to closed sets.

Note that a map may be open, closed, both, or neither of them. Moreover,

open and closed maps are not necessarily continuous.

Example 1.1.33. If Y has the discrete topology (i.e. all subsets are open
and closed) then every function f : X → Y is both open and closed (but
not necessarily continuous). For example, if we take the standard euclidean
topology on R and the discrete topology on Z then the floor function R → Z
is open and closed, but not continuous. (Indeed, the preimage of the open set
{0} is [0, 1) ⊂ R, which is not open in the standard euclidean topology).
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1. Preliminaries

If a continuous map f is one-to-one, f−1
does not need to be continuous.

Example 1.1.34.

Let us consider [0, 1) ⊂ R and S1 ⊂ R2 endowed with the subspace topologies
given by the euclidean topology on R and on R2, respectively. The map

f : [0, 1) → S1

t �→ (cos 2πt, sin 2πt).

is bijective and continuous but f−1 is not continuous, since there are open
subsets of [0, 1) whose image under f is not open in S1. (For example, [0, 12)
is open in [0, 1) but f([0, 12)) is not open in S1.)

Definition 1.1.35. A one-to-one map f from X onto Y is a homeomorphism

if and only if f and f−1 are both continuous. Equivalently, iff f and f−1 are
both open (closed). If such a mapping exists, X and Y are said to be two
homeomorphic topological spaces.

In other words an homeomorphism is a one-to-one mapping which sends

every open (resp. closed) set of X in an open (resp. closed) set of Y and

viceversa, i.e. an homeomorphism is both an open and closed map. Note that

the homeomorphism gives an equivalence relation on the class of all topological

spaces.

Examples 1.1.36. In these examples we consider any subset of Rn endowed
with the subset topology induced by the Euclidean topology on Rn.

1. Any open interval of R is homeomorphic to any other open interval of
R and also to R itself.

2. A circle and a square in R2 are homeomorphic.

3. The circle S1 with a point removed is homeomorphic to R.

Let us consider now the case when a set X carries two different topologies

τ1 and τ2. Then the following two properties are equivalent:

• the identity ι of X is continuous as a mapping from (X, τ1) and (X, τ2)

• the topology τ1 is finer than the topology τ2.

Therefore, ι is a homeomorphism if and only if the two topologies coincide.

Proof. Suppose that ι is continuous. Let U ∈ τ2. Then ι−1
(U) = U ∈ τ1,

hence U ∈ τ1. Therefore, τ2 ⊆ τ1. Conversely, assume that τ2 ⊆ τ1 and

take any U ∈ τ2. Then U ∈ τ1 and by definition of identity we know that

ι−1
(U) = U . Hence, ι−1

(U) ∈ τ1 and therefore, ι is continuous.
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1.1. Topological spaces

Proposition 1.1.37. Continuous maps preserve the convergence of sequences.
That is, if f : X → Y is a continuous map between two topological spaces
(X, τX) and (Y, τY ) and if {xn}n∈N is a sequence of points in X convergent to
a point x ∈ X then {f(xn)}n∈N converges to f(x) ∈ Y .

Proof. (Sheet 2, Exercise 4 b))

1.1.5 Hausdorff spaces

Definition 1.1.38. A topological space X is said to be Hausdorff (or sepa-

rated) if any two distinct points of X have neighbourhoods without common
points; or equivalently if:
(T2) two distinct points always lie in disjoint open sets.

In literature, the Hausdorff space are often called T2-spaces and the axiom

(T2) is said to be the separation axiom.

Proposition 1.1.39. In a Hausdorff space the intersection of all closed neigh-
bourhoods of a point contains the point alone. Hence, the singletons are closed.

Proof. Let us fix a point x ∈ X, where X is a Hausdorff space. Take y �= x.

By definition, there exist a neighbourhood U(x) of x and a neighbourhood

V (y) of y s.t. U(x) ∩ V (y) = ∅. Therefore, y /∈ U(x).

Examples 1.1.40.

1. Any metric space is Hausdorff.
Indeed, for any x, y ∈ (X, d) with x �= y just choose 0 < ε <

1
2d(x, y)

and you get Bε(x) ∩Bε(y) = ∅.
2. Any set endowed with the discrete topology is a Hausdorff space.

Indeed, any singleton is open in the discrete topology so for any two

distinct point x, y we have that {x} and {y} are disjoint and open.

3. The only Hausdorff topology on a finite set is the discrete topology.
In fact, since X is finite, any subset S of X is finite and so S is a

finite union of singletons. But since X is also Hausdorff, the previous

proposition implies that any singleton is closed. Hence, any subset S of

X is closed and so the topology on X has to be the discrete one.

4. An infinite set with the cofinite topology is not Hausdorff.
In fact, any two non-empty open subsets O1, O2 in the cofinite topology

on X are complements of finite subsets. Therefore, their intersection

O1 ∩O2 is still a complement of a finite subset, but X is infinite and so

O1 ∩O2 �= ∅. Hence, X is not Hausdorff.
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1. Preliminaries

1.2 Linear mappings between vector spaces

The basic notions from linear algebra are assumed to be well-known and so

they are not recalled here. However, we briefly give again the definition of

vector space and fix some general terminology for linear mappings between

vector spaces. In this section we are going to consider vector spaces over the

field K of real or complex numbers which is given the usual euclidean topology

defined by means of the modulus.

Definition 1.2.1. A set X with the two mappings:
X ×X → X

(x, y) �→ x+ y vector addition

K×X → X

(λ, x) �→ λx scalar multiplication

is a vector space (or linear space) over K if the following axioms are satisfied:
(L1) 1. (x+ y) + z = x+ (y + z), ∀x, y, z ∈ X (associativity of +)

2. x+ y = y + x, ∀x, y ∈ X (commutativity of +)
3. ∃ o ∈ X: x+ o = x, ∀x,∈ X (neutral element for +)
4. ∀x ∈ X, ∃! − x ∈ X s.t. x+ (−x) = o (inverse element for +)

(L2) 1. λ(µx) = (λµ)x, ∀x ∈ X, ∀λ, µ ∈ K
(compatibility of scalar multiplication with field multiplication)

2. 1x = x ∀x ∈ X (neutral element for scalar multiplication)
3. (λ+ µ)x = λx+ µx, ∀x ∈ X, ∀λ, µ ∈ K

(distributivity of scalar multiplication with respect to field addition)
4. λ(x+ y) = λx+ λy, ∀x, y ∈ X, ∀λ ∈ K

(distributivity of scalar multiplication wrt vector addition)

Definition 1.2.2.

Let X,Y be two vector space over K. A mapping f : X → Y is called lin-

ear mapping or homomorphism if f preserves the vector space structure, i.e.
f(λx+ µy) = λf(x) + µf(y) ∀x, y ∈ X, ∀λ, µ ∈ K.

Definition 1.2.3.

• A linear mapping from X to itself is called endomorphism.
• A one-to-one linear mapping is called monomorphism. If S is a subspace

of X, the identity map is a monomorphism and it is called embedding.
• An onto (surjective) linear mapping is called epimorphism.
• A bijective (one-to-one and onto) linear mapping between two vector

spaces X and Y over K is called (algebraic) isomorphism. If such a
map exists, we say that X and Y are (algebraically) isomorphic X ∼= Y .

• An isomorphism from X into itself is called automorphism.
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1.2. Linear mappings between vector spaces

It is easy to prove that: A linear mapping is one-to-one (injective) if and

only if f(x) = 0 implies x = 0.

Definition 1.2.4. A linear mapping from X → K is called linear functional

or linear form on X. The set of all linear functionals on X is called algebraic

dual and it is denoted by X∗.

Note that the dual space of a finite dimensional vector space X is isomor-

phic to X.
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