
2.3. Quotient topological vector spaces

Corollary 2.2.4. For a t.v.s. X the following are equivalent:
a) X is Hausdorff.
b) the intersection of all neighbourhoods of the origin o is just {o}.
c) {0} is closed.

Note that in a t.v.s. {0} is closed is equivalent to say that all singletons
are closed (and so that the space is (T1)).

Proof.
a)⇒ b) Let X be a Hausdorff t.v.s. space. Clearly, {o} ⊆ ∩U∈F(o)U . Now
if b) does not hold, then there exists x ∈ ∩U∈F(o)U with x �= o. But by the
previous theorem we know that (2.1) holds and so there exists V ∈ F(o) s.t.
x /∈ V and so x /∈ ∩U∈F(o)U which is a contradiction.

b)⇒ c) Assume that ∩U∈F(o)U = {o}. If x ∈ {o} then ∀Vx ∈ F(x) we have
Vx ∩ {o} �= ∅, i.e. o ∈ Vx. By Corollary 2.1.9 we know that each Vx = U + x
with U ∈ F(o). Then o = u + x for some u ∈ U and so x = −u ∈ −U . This
means that x ∈ ∩U∈F(o)(−U). Since every dilation is an homeomorphism and

b) holds, we have that x ∈ ∩U∈F(o)U = {0}. Hence, x = 0 and so {o} = {o},
i.e. {o} is closed.

c)⇒ a) Assume that X is not Hausdorff. Then by the previous proposition
(2.1) does not hold, i.e. there exists x �= o s.t. x ∈ U for all U ∈ F(o). This
means that x ∈ ∩U∈F(o)U ⊆ ∩U∈F(o)closedU = {o} By c), {o} = {o} and so
x = 0 which is a contradiction.

Example 2.2.5. Every vector space with an infinite number of elements en-
dowed with the cofinite topology is not a tvs. It is clear that in such topological
space all singletons are closed (i.e. it is T1). Therefore, if it was a t.v.s. then
by the previous results it should be a Hausdorff space which is not true as
shown in Example 1.1.40.

2.3 Quotient topological vector spaces

Quotient topology

Let X be a topological space and ∼ be any equivalence relation on X. Then
the quotient set X/∼ is defined to be the set of all equivalence classes w.r.t.
to ∼. The map φ : X → X/∼ which assigns to each x ∈ X its equivalence
class φ(x) w.r.t. ∼ is called the canonical map or quotient map. Note that φ is
surjective. We may define a topology on X/ ∼ by setting that: a subset U of
X/∼ is open iff the preimage φ−1(U) is open in X. This is called the quotient
topology on X/ ∼. Then it is easy to verify (Sheet 4, Exercise 2) that:
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2. Topological Vector Spaces

• the quotient map φ is continuous.
• the quotient topology on X/∼ is the finest topology on X/∼ s.t. φ is

continuous.
Note that the quotient map φ is not necessarily open or closed.

Example 2.3.1. Consider R with the standard topology given by the modulus
and define the following equivalence relation on R:

x ∼ y ⇔ (x = y ∨ {x, y} ⊂ Z).

Let R/∼ be the quotient set w.r.t ∼ and φ : R → R/∼ the correspondent
quotient map. Let us consider the quotient topology on R/∼. Then φ is not
an open map. In fact, if U is an open proper subset of R containing an integer,
then φ−1(φ(U)) = U ∪ Z which is not open in R with the standard topology.
Hence, φ(U) is not open in R/∼ with the quotient topology.

For an example of quotient map which is not closed see Example 2.3.3 in
the following.

Quotient vector space

Let X be a vector space and M a linear subspace of X. For two arbitrary
elements x, y ∈ X, we define x ∼M y iff x − y ∈ M . It is easy to see
that ∼M is an equivalence relation: it is reflexive, since x − x = 0 ∈ M
(every linear subspace contains the origin); it is symmetric, since x − y ∈ M
implies −(x − y) = y − x ∈ M (if a linear subspace contains an element, it
contains its inverse); it is transitive, since x − y ∈ M , y − z ∈ M implies
x− z = (x− y)+ (y− z) ∈ M (when a linear subspace contains two vectors, it
also contains their sum). Then X/M is defined to be the quotient set X/∼M ,
i.e. the set of all equivalence classes for the relation ∼M described above. The
canonical (or quotient) map φ : X → X/M which assigns to each x ∈ X its
equivalence class φ(x) w.r.t. the relation ∼M is clearly surjective. Using the
fact that M is a linear subspace of X, it is easy to check that:

1. if x ∼M y, then ∀λ ∈ K we have λx ∼M λy.
2. if x ∼M y, then ∀ z ∈ X we have x+ z ∼M y + z.

These two properties guarantee that the following operations are well-defined
on X/M :

• vector addition: ∀φ(x), φ(y) ∈ X/M , φ(x) + φ(y) := φ(x+ y)
• scalar multiplication: ∀λ ∈ K, ∀φ(x) ∈ X/M , λφ(x) := φ(λx)

X/M with the two operations defined above is a vector space and therefore
it is often called quotient vector space. Then the quotient map φ is clearly
linear.
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2.3. Quotient topological vector spaces

Quotient topological vector space

Let X be now a t.v.s. and M a linear subspace of X. Consider the quotient
vector space X/M and the quotient map φ : X → X/M defined in Section 2.3.
Since X is a t.v.s, it is in particular a topological space, so we can consider
on X/M the quotient topology defined in Section 2.3. We already know that
in this topological setting φ is continuous but actually the structure of t.v.s.
on X guarantees also that it is open.

Proposition 2.3.2. For a linear subspace M of a t.v.s.X, the quotient map-
ping φ : X → X/M is open (i.e. carries open sets in X to open sets in X/M)
when X/M is endowed with the quotient topology.

Proof. Let V open in X. Then we have

φ−1(φ(V )) = V +M = ∪m∈M (V +m)

Since X is a t.v.s, its topology is translation invariant and so V +m is open
for any m ∈ M . Hence, φ−1(φ(V )) is open in X as union of open sets. By
definition, this means that φ(V ) is open in X/M endowed with the quotient
topology.

It is then clear that φ carries neighborhoods of a point in X into neighbor-
hoods of a point in X/M and viceversa. Hence, the neighborhoods of the
origin in X/M are direct images under φ of the neighborhoods of the origin
in X. In conclusion, when X is a t.v.s and M is a subspace of X, we can
rewrite the definition of quotient topology on X/M in terms of neighborhoods
as follows: the filter of neighborhoods of the origin of X/M is exactly the im-
age under φ of the filter of neighborhoods of the origin in X.

It is not true, in general (not even when X is a t.v.s. and M is a subspace
of X), that the quotient map is closed.

Example 2.3.3.

Consider R2 with the euclidean topology and the hyperbola H := {(x, y) ∈ R2 :
xy = 1}. If M is one of the coordinate axes, then R2/M can be identified
with the other coordinate axis and the quotient map φ with the orthogonal
projection on it. All these identifications are also valid for the topologies. The
hyperbola H is closed in R2 but its image under φ is the complement of the
origin on a straight line which is open.
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2. Topological Vector Spaces

Corollary 2.3.4. For a linear subspace M of a t.v.s. X, the quotient space
X/M endowed with the quotient topology is a t.v.s..

Proof.
For convenience, we denote here by A the vector addition in X/M and just by
+ the vector addition inX. LetW be a neighbourhood of the origin o inX/M .
We aim to prove that A−1(W ) is a neighbourhood of (o, o) in X/M ×X/M .

The continuity of the quotient map φ : X → X/M implies that φ−1(W )
is a neighbourhood of the origin in X. Then, by Theorem 2.1.10-2 (we can
apply the theorem because X is a t.v.s.), there exists V neighbourhood of
the origin in X s.t. V + V ⊆ φ−1(W ). Hence, by the linearity of φ, we get
A(φ(V ) × φ(V )) = φ(V + V ) ⊆ W , i.e. φ(V ) × φ(V ) ⊆ A−1(W ). Since φ is
also open, φ(V ) is a neighbourhood of the origin o in X/M and so A−1(W ) is
a neighbourhood of (o, o) in X/M ×X/M .

A similar argument gives the continuity of the scalar multiplication.

Proposition 2.3.5. Let X be a t.v.s. and M a linear subspace of X. Consider
X/M endowed with the quotient topology. Then the two following properties
are equivalent:
a) M is closed
b) X/M is Hausdorff

Proof.
In view of Corollary 2.2.4, (b) is equivalent to say that the complement of the
origin in X/M is open w.r.t. the quotient topology. But the complement of
the origin in X/M is exactly the image under φ of the complement of M in X.
Since φ is an open continuous map, the image under φ of the complement of M
in X is open in X/M iff the complement of M in X is open, i.e.(a) holds.

Corollary 2.3.6. If X is a t.v.s., then X/{o} endowed with the quotient
topology is a Hausdorff t.v.s.. X/{o} is said to be the Hausdorff t.v.s. asso-
ciated with the t.v.s. X. When a t.v.s. X is Hausdorff, X and X/{o} are
topologically isomorphic.

Proof.
Since X is a t.v.s. and {o} is a linear subspace of X, {o} is a closed linear
subspace of X. Then, by Corollary 2.3.4 and Proposition 2.3.5, X/{o} is a
Hausdorff t.v.s.. If in addition X is Hausdorff, then Corollary 2.2.4 guaran-
tees that {o} = {o} in X. Therefore, the quotient map φ : X → X/{o} is
also injective because in this case Ker(φ) = {o}. Hence, φ is a topological
isomorphism (i.e. bijective, continuous, open, linear) between X and X/{o}
which is indeed X/{o}.
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2.4. Continuous linear mappings between t.v.s.

2.4 Continuous linear mappings between t.v.s.

Let X and Y be two vector spaces over K and f : X → Y a linear map. We
define the image of f , and denote it by Im(f), as the subset of Y :

Im(f) := {y ∈ Y : ∃x ∈ X s.t. y = f(x)}.

We define the kernel of f , and denote it by Ker(f), as the subset of X:

Ker(f) := {x ∈ X : f(x) = 0}.

Both Im(f) and Ker(f) are linear subspaces of Y and X, respectively. We
have then the diagram:

X Im(f) Y

X/Ker(f)

φ

f i

f̄

where i is the natural injection of Im(f) into Y , i.e. the mapping which to
each element y of Im(f) assigns that same element y regarded as an element
of Y ; φ is the canonical map of X onto its quotient X/Ker(f). The mapping
f̄ is defined so as to make the diagram commutative, which means that:

∀x ∈ X, f(x) = f̄(φ(x)).

Note that
• f̄ is well-defined.

Indeed, if φ(x) = φ(y), i.e. x − y ∈ Ker(f), then f(x − y) = 0 that is
f(x) = f(y) and so f̄(φ(x)) = f̄(φ(y)).

• f̄ is linear.
This is an immediate consequence of the linearity of f and of the linear
structure of X/Ker(f).

• f̄ is a one-to-one linear map of X/Ker(f) onto Im(f).
The onto property is evident from the definition of Im(f) and of f̄ .
As for the one-to-one property, note that f̄(φ(x)) = f̄(φ(y)) means by
definition that f(x) = f(y), i.e. f(x − y) = 0. This is equivalent, by
linearity of f , to say that x−y ∈ Ker(f), which means that φ(x) = φ(y).
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2. Topological Vector Spaces

The set of all linear maps (continuous or not) of a vector space X into another
vector space Y is denoted by L(X;Y ). Note that L(X;Y ) is a vector space
for the natural addition and multiplication by scalars of functions. Recall that
when Y = K, the space L(X;Y ) is denoted by X∗ and it is called the algebraic
dual of X (see Definition 1.2.4).

Let us not turn to consider linear mapping between two t.v.s. X and Y .
Since they posses a topological structure, it is natural to study in this setting
continuous linear mappings.

Proposition 2.4.1. Let f : X → Y a linear map between two t.v.s. X and Y .
If Y is Hausdorff and f is continuous, then Ker(f) is closed in X.

Proof.
Clearly, Ker(f) = f−1({o}). Since Y is a Hausdorff t.v.s., {o} is closed in Y
and so, by the continuity of f , Ker(f) is also closed in Y .

Note that Ker(f) might be closed in X also when Y is not Hausdorff. For
instance, when f ≡ 0 or when f is injective and X is Hausdorff.

Proposition 2.4.2. Let f : X → Y a linear map between two t.v.s. X and Y .
The map f is continuous if and only if the map f̄ is continuous.

Proof.
Suppose f continuous and let U be an open subset in Im(f). Then f−1(U)
is open in X. By definition of f̄ , we have f̄−1(U) = φ(f−1(U)). Since the
quotient map φ : X → X/Ker(f) is open, φ(f−1(U)) is open in X/Ker(f).
Hence, f̄−1(U) is open in X/Ker(f) and so the map f̄ is continuous. Vicev-
ersa, suppose that f̄ is continuous. Since f = f̄ ◦ φ and φ is continuous, f is
also continuous as composition of continuous maps.

In general, the inverse of f̄ , which is well defined on Im(f) since f̄ is in-
jective, is not continuous. In other words, f̄ is not necessarily bi-continuous.

The set of all continuous linear maps of a t.v.s. X into another t.v.s. Y is
denoted by L(X;Y ) and it is a vector subspace of L(X;Y ). When Y = K, the
space L(X;Y ) is usually denoted by X � which is called the topological dual of
X, in order to underline the difference with X∗ the algebraic dual of X. X �

is a vector subspace of X∗ and is exactly the vector space of all continuous
linear functionals, or continuous linear forms, on X. The vector spaces X � and
L(X;Y ) will play an important role in the forthcoming and will be equipped
with various topologies.
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