Polyharmonic Cubature Formulas on the Ball and on the Sphere

Polyharmonic Paradigm

O. Kounchev

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences \& IZKS Uni-Bonn; partially supported by Bulgarian NSF grant I02/19.

DMV meeting, Hamburg, September 2015

The speaker's attendance at this conference was sponsored by the Alexander von Humboldt Foundation.
http://www.humboldt-foundation.de

Main purpose of the talk

- Beauty is the first test: there is no permanent place in the world for ugly mathematics.

Main purpose of the talk

- Beauty is the first test: there is no permanent place in the world for ugly mathematics.
- We may say, roughly, that a mathematical idea is 'significant' if it can be connected, in a natural and illuminating way, with a large complex of other mathematical ideas.

Main purpose of the talk

- Beauty is the first test: there is no permanent place in the world for ugly mathematics.
- We may say, roughly, that a mathematical idea is 'significant' if it can be connected, in a natural and illuminating way, with a large complex of other mathematical ideas.
- "It is one of the first duties of a professor, for example, in any subject, to exaggerate a little both the importance of his subject and his own importance in it."

Main purpose of the talk

- Beauty is the first test: there is no permanent place in the world for ugly mathematics.
- We may say, roughly, that a mathematical idea is 'significant' if it can be connected, in a natural and illuminating way, with a large complex of other mathematical ideas.
- "It is one of the first duties of a professor, for example, in any subject, to exaggerate a little both the importance of his subject and his own importance in it."
- "Mathematical fame, if you have the cash to pay for it, is one of the soundest and steadiest of investments."

Main purpose of the talk

- Beauty is the first test: there is no permanent place in the world for ugly mathematics.
- We may say, roughly, that a mathematical idea is 'significant' if it can be connected, in a natural and illuminating way, with a large complex of other mathematical ideas.
- "It is one of the first duties of a professor, for example, in any subject, to exaggerate a little both the importance of his subject and his own importance in it."
- "Mathematical fame, if you have the cash to pay for it, is one of the soundest and steadiest of investments."
- G. G. Hardy, A Mathematician's Apology

Moment Problem - Relatives and Derivatives, Applications

- Orthogonal polynomials, Quadrature formulas - Gauss, Jacobi

Moment Problem - Relatives and Derivatives, Applications

- Orthogonal polynomials, Quadrature formulas - Gauss, Jacobi
- Pade approximation - Continued fractions - Γ function representation

Moment Problem - Relatives and Derivatives, Applications

- Orthogonal polynomials, Quadrature formulas - Gauss, Jacobi
- Pade approximation - Continued fractions - Γ function representation
- C. F. Gauss, A. Markov, T. Stieltjes, M. Krein

Moment Problem - Relatives and Derivatives, Applications

- Orthogonal polynomials, Quadrature formulas - Gauss, Jacobi
- Pade approximation - Continued fractions - Γ function representation
- C. F. Gauss, A. Markov, T. Stieltjes, M. Krein
- Spectral theorem and Schrödinger operators - Jacobi matrices

Moment Problem - Relatives and Derivatives, Applications

- Orthogonal polynomials, Quadrature formulas - Gauss, Jacobi
- Pade approximation - Continued fractions - Γ function representation
- C. F. Gauss, A. Markov, T. Stieltjes, M. Krein
- Spectral theorem and Schrödinger operators - Jacobi matrices
- The M. Stone model for self-adjoint operators with simple spectrum in the Hilbert space

Moment Problem - Relatives and Derivatives, Applications

- Orthogonal polynomials, Quadrature formulas - Gauss, Jacobi
- Pade approximation - Continued fractions - Γ function representation
- C. F. Gauss, A. Markov, T. Stieltjes, M. Krein
- Spectral theorem and Schrödinger operators - Jacobi matrices
- The M. Stone model for self-adjoint operators with simple spectrum in the Hilbert space
- Spectral theory in finite dimensions - directly related to PCA and SVD - the most applied tool in analysis of Economics and Financial data

Multidimensional case - challenges

- Orthogonal polynomials - Hermite 1889

Multidimensional case - challenges

- Orthogonal polynomials - Hermite 1889
- Cubature formulas - Hermite, Appelle, Radon, Sobolev, etc.

Multidimensional case - challenges

- Orthogonal polynomials - Hermite 1889
- Cubature formulas - Hermite, Appelle, Radon, Sobolev, etc.
- The challenges: A canonical form for Tensors in finite dimensions would be the key to the efficient High-Dimensional Approximation

Multidimensional case - challenges

- Orthogonal polynomials - Hermite 1889
- Cubature formulas - Hermite, Appelle, Radon, Sobolev, etc.
- The challenges: A canonical form for Tensors in finite dimensions would be the key to the efficient High-Dimensional Approximation
- Models for Schrödinger operators with atomic and molecular potentials - 2 Nobel prizes in 1998

Multidimensional case - challenges

- Orthogonal polynomials - Hermite 1889
- Cubature formulas - Hermite, Appelle, Radon, Sobolev, etc.
- The challenges: A canonical form for Tensors in finite dimensions would be the key to the efficient High-Dimensional Approximation
- Models for Schrödinger operators with atomic and molecular potentials - 2 Nobel prizes in 1998
- Matrix models in Two-dimensional Quantum Gravity - Polyakov, Witten

Multidimensional case - challenges

- Orthogonal polynomials - Hermite 1889
- Cubature formulas - Hermite, Appelle, Radon, Sobolev, etc.
- The challenges: A canonical form for Tensors in finite dimensions would be the key to the efficient High-Dimensional Approximation
- Models for Schrödinger operators with atomic and molecular potentials - 2 Nobel prizes in 1998
- Matrix models in Two-dimensional Quantum Gravity - Polyakov, Witten
- Completely Integrable systems, Toda and KdV - J. Moser (1974) in Toda lattices, (multivariate, Albeverio, OK, 2015)

One-dimensional reminder - Jacobi's point of view

- Remind: why are orthogonal polynomials $P_{N}(t)$ so valuable ? Gauss-Jacobi quadrature contains weight $w(t)$:

$$
\int_{-1}^{1} f(t) w(t) d t=\sum_{j=1}^{N} f\left(t_{j}\right) \lambda_{j} \quad \text { where } P_{N}\left(t_{j}\right)=0
$$

Also, the Stieltjes transform

$$
\int_{-1}^{1} \frac{w(t) d t}{t-z} \approx \frac{Q_{N}(z)}{P_{N}(z)}+O\left(\frac{1}{z^{N+1}}\right) \quad \text { for } z \longrightarrow \infty
$$

Think about the multidimensional analogy to Gauss-Jacobi rules !

One-dimensional reminder - Jacobi's point of view

- Remind: why are orthogonal polynomials $P_{N}(t)$ so valuable ? Gauss-Jacobi quadrature contains weight $w(t)$:

$$
\int_{-1}^{1} f(t) w(t) d t=\sum_{j=1}^{N} f\left(t_{j}\right) \lambda_{j} \quad \text { where } P_{N}\left(t_{j}\right)=0
$$

Also, the Stieltjes transform

$$
\int_{-1}^{1} \frac{w(t) d t}{t-z} \approx \frac{Q_{N}(z)}{P_{N}(z)}+O\left(\frac{1}{z^{N+1}}\right) \quad \text { for } z \longrightarrow \infty .
$$

- Quadrature formulas - Gauss (for $w \equiv 1$), and Gauss-Jacobi:
$f(t)=g(t) w(t)$ with the weight $w(t)$ as e.g. $w(t)=t^{\alpha}(1-t)^{\beta}$. Compute

$$
\int_{0}^{1} g(t) \sqrt{t} d t
$$

for a polynomial $g(t)$ in two ways: using Gauss, or using Gauss-Jacobi (respecting the weight \sqrt{t}).
Think about the multidimensional analogy to Gauss-Jacobi rules !

Who are the classics in 1D Quadrature formulas?

Carl Friedrich Gauss:

Carl Gustav Jacob Jacobi:

The Moment Problem classics: Andrey Markov

The Moment Problem classics: Thomas Stieltjes

Charles Hermite (December 24, 1822 - January 14, 1901)

Famous contributors to Cubature formulas: Sobolev, (6 Oct. 1908 - 3 Jan. 1989)

S. L. Sobolev - 2

Cubature formula

We consider integrals on the unit ball $B \subset \mathbb{R}^{n}$:

$$
\int_{B} f(x) d x
$$

Following Jacobi's point of view, assume that $f(x)$ has representation

$$
f(x)=P(x) w(x)
$$

with $P(x)$ - a polynomial; $w(x)$ - a "weight function" of a limited smoothness (or, singularity) at $x=0$.

- How to proceed?

Cubature formula

We consider integrals on the unit ball $B \subset \mathbb{R}^{n}$:

$$
\int_{B} f(x) d x
$$

Following Jacobi's point of view, assume that $f(x)$ has representation

$$
f(x)=P(x) w(x)
$$

with $P(x)$ - a polynomial; $w(x)$ - a "weight function" of a limited smoothness (or, singularity) at $x=0$.

- How to proceed?
- We need a new point of view on the multivariate polynomials.

A remarkable representation of multivariate polynomials

- Let $\left\{Y_{k, \ell}(x): \ell=1,2, \ldots, a_{k}\right\}$ be an orthonormal basis of the set of homogeneous (order k) harmonic polynomials - the spherical harmonics; hence

$$
Y_{k, \ell}(r \theta)=r^{k} Y_{k, \ell}(\theta) \quad \text { for } r=|x|, \theta \in \mathbb{S}^{n-1}
$$

A remarkable representation of multivariate polynomials

- Let $\left\{Y_{k, \ell}(x): \ell=1,2, \ldots, a_{k}\right\}$ be an orthonormal basis of the set of homogeneous (order k) harmonic polynomials - the spherical harmonics; hence

$$
Y_{k, \ell}(r \theta)=r^{k} Y_{k, \ell}(\theta) \quad \text { for } r=|x|, \theta \in \mathbb{S}^{n-1}
$$

- Let $P(x)$ be a multivariate polynomial satisfying $\Delta^{N} P(x)=0$. Then the following remarkable Almansi representation holds

$$
P(x)=\sum_{k, \ell} p_{k, \ell}\left(r^{2}\right) Y_{k, \ell}(x) \quad r=|x|
$$

where $p_{k, \ell}$ is a $1 D$ polynomial of degree $\leq N-1$ (see about the Gauss-Almansi S. Sobolev's book on Cubature formulas).

A remarkable representation of multivariate polynomials

- Let $\left\{Y_{k, \ell}(x): \ell=1,2, \ldots, a_{k}\right\}$ be an orthonormal basis of the set of homogeneous (order k) harmonic polynomials - the spherical harmonics; hence

$$
Y_{k, \ell}(r \theta)=r^{k} Y_{k, \ell}(\theta) \quad \text { for } r=|x|, \theta \in \mathbb{S}^{n-1}
$$

- Let $P(x)$ be a multivariate polynomial satisfying $\Delta^{N} P(x)=0$. Then the following remarkable Almansi representation holds

$$
P(x)=\sum_{k, \ell} p_{k, \ell}\left(r^{2}\right) Y_{k, \ell}(x) \quad r=|x|
$$

where $p_{k, \ell}$ is a $1 D$ polynomial of degree $\leq N-1$ (see about the Gauss-Almansi S. Sobolev's book on Cubature formulas).

- Hence, the polyharmonic degree $N\left(\right.$ in $\left.\Delta^{N}\right)$ is a generalization for the one-dimensional degree N of the polynomials.

A remarkable representation of multivariate polynomials

- Let $\left\{Y_{k, \ell}(x): \ell=1,2, \ldots, a_{k}\right\}$ be an orthonormal basis of the set of homogeneous (order k) harmonic polynomials - the spherical harmonics; hence

$$
Y_{k, \ell}(r \theta)=r^{k} Y_{k, \ell}(\theta) \quad \text { for } r=|x|, \theta \in \mathbb{S}^{n-1}
$$

- Let $P(x)$ be a multivariate polynomial satisfying $\Delta^{N} P(x)=0$. Then the following remarkable Almansi representation holds

$$
P(x)=\sum_{k, \ell} p_{k, \ell}\left(r^{2}\right) Y_{k, \ell}(x) \quad r=|x|
$$

where $p_{k, \ell}$ is a $1 D$ polynomial of degree $\leq N-1$ (see about the Gauss-Almansi S. Sobolev's book on Cubature formulas).

- Hence, the polyharmonic degree $N\left(\right.$ in $\left.\Delta^{N}\right)$ is a generalization for the one-dimensional degree N of the polynomials.
- This is a fundamental point of the so-called Polyharmonic Paradigm (see the monograph O.K., Multivariate Polysplines, Academic press, 2001)

Two-dimensional case - simpler

For simplicity, consider the case $n=2$, the plane \mathbb{R}^{2} where we have $a_{0}=1$ and $a_{k}=2$ for $k \geq 1$, namely,

$$
\begin{aligned}
& Y_{(0,1)}(\varphi)=1 / \sqrt{2 \pi} \\
& Y_{(k, 1)}(\varphi)=\frac{1}{\sqrt{\pi}} \cos k \varphi \quad \text { and } \quad Y_{(k, 2)}(\varphi)=\frac{1}{\sqrt{\pi}} \sin k \varphi .
\end{aligned}
$$

for integers $k \geq 1$.
We have the Fourier expansion of the weight function $w(x)$:

$$
\begin{aligned}
w(x) & =\sum_{k, \ell} w_{k, \ell}(r) Y_{k, \ell}(\theta) \quad \text { where } \\
w_{k, \ell}(r) & =\int_{\mathrm{S}^{n-1}} w(r \theta) Y_{k, \ell}(\theta) d \sigma_{\theta}
\end{aligned}
$$

The integral as infinite sum of 1-dim integrals

$$
\begin{aligned}
\int_{B} P(x) w(x) d x & =\sum_{k, \ell} \int_{0}^{1} p_{k, \ell}\left(r^{2}\right) r^{k} w_{k, \ell}(r) r^{n-1} d r \quad \text { with } \rho=r^{2} \\
& =\sum_{k, \ell} \int_{0}^{1} p_{k, \ell}(\rho) \widetilde{w}_{k, \ell}(\rho) d \rho
\end{aligned}
$$

- Now what if (a crucial assumption !!!)

$$
d \mu_{k, \ell} \geq 0 \quad ? ? ?
$$

The integral as infinite sum of 1-dim integrals

$$
\begin{aligned}
\int_{B} P(x) w(x) d x & =\sum_{k, \ell} \int_{0}^{1} p_{k, \ell}\left(r^{2}\right) r^{k} w_{k, \ell}(r) r^{n-1} d r \quad \text { with } \rho=r^{2} \\
& =\sum_{k, \ell} \int_{0}^{1} p_{k, \ell}(\rho) \widetilde{w}_{k, \ell}(\rho) d \rho
\end{aligned}
$$

- Now what if (a crucial assumption !!!)

$$
d \mu_{k, \ell} \geq 0 \quad ? ? ?
$$

- Here the new measure $\widetilde{w}_{k, \ell}(\rho)$ is defined by

$$
\widetilde{w}_{k, \ell}(\rho) d \rho:=r^{k} w_{k, \ell}(r) r^{n-1} d r=\frac{1}{2} \rho^{\frac{k+n-2}{2}} w_{k, \ell}(\sqrt{\rho}) d \rho \geq 0
$$

The integral as infinite sum of 1-dim integrals

$$
\begin{aligned}
\int_{B} P(x) w(x) d x & =\sum_{k, \ell} \int_{0}^{1} p_{k, \ell}\left(r^{2}\right) r^{k} w_{k, \ell}(r) r^{n-1} d r \quad \text { with } \rho=r^{2} \\
& =\sum_{k, \ell} \int_{0}^{1} p_{k, \ell}(\rho) \widetilde{w}_{k, \ell}(\rho) d \rho
\end{aligned}
$$

- Now what if (a crucial assumption !!!)

$$
d \mu_{k, \ell} \geq 0 \quad ? ? ?
$$

- Here the new measure $\widetilde{w}_{k, \ell}(\rho)$ is defined by

$$
\widetilde{w}_{k, \ell}(\rho) d \rho:=r^{k} w_{k, \ell}(r) r^{n-1} d r=\frac{1}{2} \rho^{\frac{k+n-2}{2}} w_{k, \ell}(\sqrt{\rho}) d \rho \geq 0
$$

- Hence, for every (k, ℓ) and $N \geq 1$, apply N-point Gauss-Jacobi quadrature:

$$
\int_{0}^{1} p_{k, \ell}(\rho) \widetilde{w}_{k, \ell}(\rho) d \rho \approx \sum_{i=1}^{N} p_{k, \ell}\left(t_{j ; k, \ell}\right) \lambda_{j ; k, \ell}
$$

The integral as infinite sum of 1-dim integrals

$$
\begin{aligned}
\int_{B} P(x) w(x) d x & =\sum_{k, \ell} \int_{0}^{1} p_{k, \ell}\left(r^{2}\right) r^{k} w_{k, \ell}(r) r^{n-1} d r \quad \text { with } \rho=r^{2} \\
& =\sum_{k, \ell} \int_{0}^{1} p_{k, \ell}(\rho) \widetilde{w}_{k, \ell}(\rho) d \rho
\end{aligned}
$$

- Now what if (a crucial assumption !!!)

$$
d \mu_{k, \ell} \geq 0 \quad ? ? ?
$$

- Here the new measure $\widetilde{w}_{k, \ell}(\rho)$ is defined by

$$
\widetilde{w}_{k, \ell}(\rho) d \rho:=r^{k} w_{k, \ell}(r) r^{n-1} d r=\frac{1}{2} \rho^{\frac{k+n-2}{2}} w_{k, \ell}(\sqrt{\rho}) d \rho \geq 0
$$

- Hence, for every (k, ℓ) and $N \geq 1$, apply N-point Gauss-Jacobi quadrature:

$$
\int_{0}^{1} p_{k, \ell}(\rho) \widetilde{w}_{k, \ell}(\rho) d \rho \approx \sum_{j=1}^{N} p_{k, \ell}\left(t_{j ; k, \ell}\right) \lambda_{j ; k, \ell}
$$

The cubature formula defined:

Now, let $g(x)$ be a continuous function with Fourier expansion

$$
g(x)=\sum_{k, \ell} g_{k, \ell}(r) Y_{k, \ell}(\theta)
$$

The integral becomes

$$
\begin{aligned}
\int_{B} g(x) w(x) d x & =\sum_{k, \ell} \int_{0}^{1} g_{k, \ell}(r) w_{k, \ell}(r) r^{n-1} d r \\
& =\frac{1}{2} \sum_{k, \ell} \int_{0}^{1} g_{k, \ell}(\sqrt{\rho}) \rho^{-\frac{k}{2}} \rho^{\frac{k}{2}} w_{k, \ell}(\sqrt{\rho}) \rho^{\frac{n-2}{2}} d \rho \\
& \approx \frac{1}{2} \sum_{k, \ell} \sum_{j=1}^{N} g_{k, \ell}\left(\sqrt{t_{j ; k, \ell}}\right) \rho_{j ; k, \ell}^{-\frac{k}{2}} \times \lambda_{j ; k, \ell} \\
& =: C(g)
\end{aligned}
$$

The miracle - Chebyshev inequality applied

The last integrals are approximated as:

$$
\int_{0}^{1} g_{k, \ell}(\sqrt{\rho}) \rho^{-\frac{k}{2}} \rho^{\frac{k}{2}} w_{k, \ell}(\sqrt{\rho}) \rho^{\frac{n-2}{2}} d \rho \approx \sum_{j=1}^{N} g_{k, \ell}\left(\sqrt{t_{j ; k, \ell}}\right) \cdot t_{j ; k, \ell}^{-\frac{k}{2}} \cdot \lambda_{j ; k, \ell}
$$

Important to see, when does the following hold (?)

$$
\sum_{k, \ell} \sum_{j=1}^{N} g_{k, \ell}\left(t_{j ; k, \ell}\right) \cdot t_{j ; k, \ell}^{-\frac{k}{2}} \cdot \lambda_{j ; k, \ell}<\infty
$$

The proof: application of the famous Chebyshev inequality: Let $F(r)$ satisfy

$$
F^{(2 N)}(r) \geq 0
$$

THEOREM. (Chebysev-Markov-Stieltjes) The Gauss-Jacobi quadrature for $w(t)$ satisfies

$$
\sum_{j=1}^{N} F\left(t_{j}\right) \lambda_{j} \leq \int_{0}^{1} F(t) w(t) d t
$$

Chebyshev inequality

From above we obtain

$$
\begin{aligned}
& \left|\sum_{j=1}^{N} g_{k, \ell}\left(t_{j ; k, \ell}\right) \cdot t_{j ; k, \ell}^{-\frac{k}{2}} \cdot \lambda_{j ; k, \ell}\right| \leq C\|g\|_{\text {sup }} \sum_{j=1}^{N} t_{j ; k, \ell}^{-\frac{k}{2}} \cdot \lambda_{j ; k, \ell} \\
& \leq C\|g\|_{\text {sup }} \int \rho^{-\frac{k}{2}} \rho^{-\frac{k}{2}} w_{k, \ell}(\sqrt{\rho}) \rho^{\frac{n-2}{2}} d \rho \\
& =C\|g\|_{\text {sup }} \int w_{k, \ell}(\sqrt{\rho}) \rho^{\frac{n-2}{2}} d \rho
\end{aligned}
$$

If we impose the condition

$$
\|w\|:=\sum_{k, \ell} \int w_{k, \ell}(\sqrt{\rho}) \rho^{\frac{n-2}{2}} d \rho<\infty
$$

then the sum is bounded from above.

Remember Hardy's idea for a mathematical proof

- The above application of the Chebyshev inequality corresponds to the idea of proof of Hardy - clear cut constellation.

Final approximation of the Fourier coefficients

To finish the Cubature formula, approximate the coefficients $g_{k, \ell}(r)$. In \mathbb{R}^{2} we have have

$$
\begin{aligned}
& g_{k, 1}(r)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} g\left(r e^{i \varphi}\right) \cos k \varphi d \varphi \\
& g_{k, 2}(r)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} g\left(r e^{i \varphi}\right) \sin k \varphi d \varphi
\end{aligned}
$$

Hence, for integers $M \geq 1$, the approximation is just the trapezoidal rule:

$$
f_{(k, \ell)}^{(M)}(r):=\frac{2 \pi}{M} \sum_{s=1}^{M} f\left(r e^{i \frac{2 \pi s}{M}}\right) Y_{(k, \ell)}\left(\frac{2 \pi s}{M}\right)
$$

The final Cubature formula is:
$\int_{B} g(x) w(x) d x \approx$

$$
\approx \frac{\pi}{M} \sum_{k=0}^{K} \sum_{\ell=1}^{a_{k}} \sum_{j=1}^{N} \sum_{s=1}^{M} \lambda_{j,(k, \ell)} \cdot t_{j,(k, \ell)}^{-\frac{k}{2}} \cdot Y_{(k, \ell)}\left(\frac{2 \pi s}{M}\right) \cdot g\left(\sqrt{t_{j,(k, \ell)}} e^{i \frac{2 \pi s}{M}}\right)
$$

Nice properties of the Cubature formula - stability estimate

The coefficients satisfy the stability estimate

$$
\left|\frac{\pi}{M} \sum_{k=0}^{K} \sum_{\ell=1}^{a_{k}} \sum_{j=1}^{N} \sum_{s=1}^{M} \lambda_{j,(k, \ell)} \cdot t_{j,(k, \ell)}^{-\frac{k}{2}} \cdot Y_{(k, \ell)}\left(\frac{2 \pi s}{M}\right)\right| \leq C_{1}\|w\| .
$$

By a theorem of Polya and others, we have a stable Cubature formula. Due to the above, we have all nice Error estimates for these Cubature formula.
Details are available in arxiv: http://arxiv.org/abs/1509.00283

The new orthogonal polynomials model

We generalize the one-dimensional M . Stone model for self-adjoint operators with simple spectrum, in a separable Hilbert space; see Theorem 4.2.3 in N. Akhiezer, The classical moment problem, 1965.

Here we provide the following generalization of the model: Assume that the weight function w is pseudo-definite, i.e.

$$
w_{k, \ell}(r)>0 \quad \text { or } \quad w_{k, \ell}(r)<0 \quad \text { for } 0 \leq r \leq 1
$$

We define the space of the model:

$$
L_{2}^{\prime}(w(x) d x):=\bigoplus_{k, \ell} L_{2}\left(d \mu_{k, \ell}\right)
$$

where the functions $f(x)$ are represented by means of the Almansi formula. The operator is

$$
A f(x)=|x|^{2} f(x)
$$

The basis of this space are the multivariate "orthogonal" polynomials

$$
\left\{P_{j}^{k, \ell}\left(r^{2}\right) r^{k} Y_{k, \ell}(\theta)\right\}_{j ; k, \ell}
$$

References

Details are available in the following references:

- O. Kounchev, H. Render (2005), Reconsideration of the multivariate moment problem and a new method for approximating multivariate integrals; http://arxiv.org/pdf/math/0509380v1.pdf

References

Details are available in the following references:

- O. Kounchev, H. Render (2005), Reconsideration of the multivariate moment problem and a new method for approximating multivariate integrals; http://arxiv.org/pdf/math/0509380v1.pdf
- O. Kounchev, H. Render (2010), The moment problem for pseudo-positive definite functionals. Arkiv for Matematik, vol. 48 : 97-120.

References

Details are available in the following references:

- O. Kounchev, H. Render (2005), Reconsideration of the multivariate moment problem and a new method for approximating multivariate integrals; http://arxiv.org/pdf/math/0509380v1.pdf
- O. Kounchev, H. Render (2010), The moment problem for pseudo-positive definite functionals. Arkiv for Matematik, vol. 48 : 97-120.
- O. Kounchev, H. Render, 2015, A new cubature formula with weight functions on the disc, with error estimates; http://arxiv.org/abs/1509.00283

References

Details are available in the following references:

- O. Kounchev, H. Render (2005), Reconsideration of the multivariate moment problem and a new method for approximating multivariate integrals; http://arxiv.org/pdf/math/0509380v1.pdf
- O. Kounchev, H. Render (2010), The moment problem for pseudo-positive definite functionals. Arkiv for Matematik, vol. 48 : 97-120.
- O. Kounchev, H. Render, 2015, A new cubature formula with weight functions on the disc, with error estimates; http://arxiv.org/abs/1509.00283
- O. Kounchev, H. Render, The Multidimensional Moment problem, Hardy spaces, and Cubature formulas, monograph in preparation, Springer.

