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Abstract

In this handout we will first look at some basics about unbounded operators.
Those will be used to give the definition of self-adjoint operators and self-adjoint
extension of an operator. Furthermore, a brief introduction to the basics of quantum
mechanics will give some motivations to derive criteria for self-adjointness and for
the existence of self-adjoint extensions of symmetric operators.
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1 Motivations: Why do we need self-adjoint operators in
physics?

In this handout we will look at some definitions and basic properties of unbounded op-
erators. It is natural to ask why we need all of this mathematical machinery. Surely it
is an interesting mathematical topic by itself, but its use goes far beyond pure mathe-
matical interest. In physics, especially quantum mechanics, self-adjoint operators play
a crucial role. They do not only describe a physical system, but one can actually draw
a connection between the pure mathematical concept and the actual measurements in a
physical system.

To illustrate this connection we should first recall that in quantum mechanics a phys-
ical system is described by operators on a separable Hilbert space H and the vectors of
norm one describe a physical state. Two vectors correspond to the same state if they
only differ by a complex factor of absolute value one, a so-called phase factor. The
behaviour of the system is described by operators on H.

In an experiment, what we basically do is measuring the eigenvalues of operators. Now
one can easily imagine that it is not possible to measure a complex value of some sort.
Therefore, one of the basic assumptions in quantum dynamics is that every operator
that corresponds to a physical observable has to have real eigenvalues. We will see in
the next section that for an operator this assumption is equivalent to its self-adjointness.

The so-called Hamilton operator, whose eigenvalues correspond to the energy of a
system, is of special interest, since it is used to calculate the dynamic behaviour of a
physical system. One fundamental equation involving this operator is the Schrödinger
equation

d

dt
[U(t)ϕ] = iH[U(t)ϕ],

where H is the Hamilton operator and U(t) is the so-called time evolution operator. It
describes the dynamic behaviour of a system, i.e. if the system is in the state ϕ at a
time t0 = 0, then it is in the state U(t)ϕ at the time t. The operator U(t) is determined
by the Hamilton operator H and to show the existence of U(t) the self-adjointness of H
is needed.

It is usually quite simple to come up with a formal expression for the Hamiltonian
associated to a system by using physical reasonings. But since physicists are ”pretty
lazy” they usually do not really think about domains but just start calculating and
afterwards say ”the domain is where this works”. Of course this will not always work
and one of the essential mathematical problems is to exactly determine the domain of
a formal operator, and whether or not it is symmetric, self-adjoint, etc. and, when
necessary, find the appropriate extension with such properties.

In Section 2 we will introduce notations and basic definitions, which will be used in
Section 3 to state and prove criteria for the self-adjointness and the existence of self-
adjoint extensions of unbounded linear operators. Section 4 will be devoted to an explicit
physical example where we use the results presented in the former sections.
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2 Preliminaries on bounded and unbounded operators

Before introducing symmetric and self-adjoint operators and their meaning in physics,
we will revise some basic definitions.

Definition 2.1 (Bounded and unbounded linear operators). Let T : H1 → H2 be a
linear operator between normed vector spaces. Then T is called bounded if

∃M > 0 : ∀x ∈ H1 : ‖Tx‖H2 ≤M‖x‖H1 ,

otherwise T is called unbounded.
Equivalently, one can define the operator norm by

‖T‖ = sup
x∈H1,x 6=0

‖Tx‖H2

‖x‖H1

and say that T is bounded if ‖T‖ <∞.

Note that any linear operator between finite-dimensional normed spaces is bound-
ed (this easily follows from the equivalence of all norms on a finite-dimensional vector
space). The matrix norm is then equivalent to the operator norm and thus the operator
is bounded. In the following let H be a Hilbert space, i.e. an inner product space which
is also complete with respect to the topology given by the metric induced by its scalar
product 〈·, ·〉. The Hellinger-Toeplitz theorem [1, p.84] states that any everywhere-
defined operator T on H satisfying ∀x, y ∈ H : 〈Tx, y〉 = 〈x, Ty〉 is necessarily bounded.
This suggests that an unbounded operator which is not self-adjoint is not defined ev-
erywhere. Therefore, whenever talking about an unbounded operator on H we mean a
linear map from a domain into H. The domain of T will be denoted by D(T ) and in
this handout is assumed to be a linear subspace of H.

To define a general unbounded operator T we must always give its domain D(T )
alongside the formal definition. Keep this slogan in mind:

Unbounded operator = Domain + how it acts

Before giving an example for an unbounded operator we will get familiar with the prob-
ably most common vector space in physics: L2(R).

Example 2.2. The space L2(R) consists of all the equivalence classes of almost every-
where equal real functions satisfying

∫
R |f(x)|2dx < ∞. A scalar product on L2(R) is

given by

〈f, g〉 =

∫
R
f(x)g(x)dx for all f, g ∈ L2(R),

inducing the norm

‖f‖2 = 〈f, f〉 =

∫
R
f(x)2dx for all f ∈ L2(R).
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This vector space is commonly used in quantum mechanics. Physical arguments give
a function in L2(R) that represents a special state of a physical system that might for
example correspond to a particle. This gets a bit clearer in the next example.

Example 2.3 (Position operator). Let D(T ) ⊆ L2(R) be the set of all functions ϕ ∈
L2(R) satisfying

∫
R x

2|ϕ(x)|2dx <∞. We define the position operator T by (Tϕ)(x) :=
xϕ(x), ∀ϕ ∈ D(T ), ∀x ∈ R. T is called the position operator since if ϕ represents
a quantum mechanical particle, then ‖Tϕ‖ corresponds to its position. It is straight
forward to see the unboundedness of this operator. Indeed, if we choose the function ϕ
to have support near infinity whilst keeping ‖ϕ‖ = 1, we can increase ‖Tϕ‖ arbitrarily,
e.g. we can take ϕ to be a rectangular function or a Gaussian function with support
near to +∞. While both example functions can be normalized to ‖ϕ‖ = 1, ‖Tϕ‖
will correspond to the ”position of the peak” and so if the peak is close to plus or
minus infinity we have the desired behaviour, i.e. ‖T‖ = ∞. To illustrate this we will

explicitly calculate the norms for a Gaussian function ϕ(x) =
e− 1

2
(x−t)2
4√π for some t ∈ R.

Remembering the standard Gaussian integral one gets:

‖ϕ‖2 =

∫ ∞
−∞

(
e−

1
2
(x−t)2

4
√
π

)2

dx =
1√
π

∫ ∞
−∞

e−(x−t)
2
dx =

1√
π

√
π = 1.

On the other hand

‖Tϕ‖2 =

∫ ∞
−∞

(
x

e−
1
2
(x−t)2

4
√
π

)2

dx =
1√
π

∫ ∞
−∞

x2e−(x−t)
2
dx = t2 +

1

2
,

where the last integral can for example be calculated using the momentum generating
function of the standard normal distribution known from stochastics. Here we can see
that we are free to choose t without altering ‖ϕ‖, but we can choose t for ‖Tϕ‖ to be
arbitrarily large.

Note, that in general even if ϕ /∈ D(T ), Tϕ might still be a well defined function but
not contained in L2(R). Hence, to remain in L2(R) we need to restrict the domain of T
in the above manner.

The next definitions are very important for the study of unbounded operators.

Definition 2.4 (Graph and closed operator). The graph of a linear transformation T
with domain D(T ) ⊆ H is the set

Γ(T ) = {(ϕ, Tϕ) | ϕ ∈ D(T )}.

T is called closed if Γ(T ) is a closed subset of H×H endowed with the product topology.

Using these two notions, one can now define extensions and closability of linear oper-
ators.
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Definition 2.5 (Extension and closable operators).
(i) Let T1 and T be linear operators onH. T1 is called an extension of T if Γ(T ) ⊂ Γ(T1).
We write T ⊂ T1. An equivalent definition is T ⊂ T1 if and only if D(T ) ⊂ D(T1) and
T1ϕ = Tϕ for all ϕ ∈ D(T ).

(ii) An operator T is closable if it has a closed extension. The smallest closed exten-
sion (w.r.t. ”⊂”) is called its closure and is denoted by T .

We are now ready to give one of the central definitions in this section, which we are
going to use extensively in the rest of this handout.

Definition 2.6 (Adjoint). Let T be a densely defined linear operator on H (i.e. D(T )
is dense in H) and D(T ∗) be the subset of H containing all the ϕ ∈ H, such that there
is a η ∈ H satisfying

〈Tψ, ϕ〉 = 〈ψ, η〉 for all ψ ∈ D(T ). (1)

For all such ϕ ∈ D(T ∗) the adjoint operator T ∗ is defined by T ∗ϕ = η. Note that
by the Riesz representation theorem [1, Thm.11.4, p. 43] 1, ϕ ∈ D(T ∗) if and only if
| 〈Tψ, ϕ〉 | ≤ C‖ψ‖H for some C > 0. Note also that η is uniquely determined in (1)
because of the density of D(T ) in H.

Let us now look at some basic properties of the adjoint operator.

Theorem 2.7. Let T be a densely defined operator on H. Then:

(i) T ∗ is closed.

(ii) T is closable if and only if D(T ∗) is dense in which case T = T ∗∗.

(iii) If T is closable, then (T )∗ = T ∗.

Proof. [1, Thm.VIII.1, p.252-253].

An important tool for characterizing closed operators is the resolvent set.

Definition 2.8 (Resolvent set). Let T be a closed operator on H. A complex number
λ is in the resolvent set ρ(T ), if λI − T is a bijection of D(T ) onto H with a bounded
inverse. If λ ∈ ρ(T ), Rλ(T ) := (λI − T )−1 is called the resolvent of T at λ.

Remark 2.9. In this definition the conditions are not all independent. In fact, using
the closed graph theorem [1, Thm.III.12, p.83] one can show that if λI−T is a bijection
of D(T ) onto H, then the inverse is automatically bounded.

The definition of spectrum for unbounded operators is the same as in the bounded
case:

Definition 2.10 (Spectrum). Let T be a linear operator in H.

1Here we are using a more general version than the one known from Linear Algebra I/II. This version
also applies to infinite dimensional Hilbert spaces.
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(i) If λ ∈ C is not in the resolvent set (λ /∈ ρ(T )), then λ is said to be in the spectrum
σ(T ) of T.

(ii) An 0 6= x ∈ H that satisfies Tx = λx for some λ ∈ C is called an eigenvector
of T ; λ is called the corresponding eigenvalue. If λ is an eigenvalue of T , then
λI − T is not injective and λ ∈ σ(T ). The set of all eigenvalues of T is called the
point spectrum of T.

(iii) If λ is not an eigenvalue and if Ran(λI − T ) is not dense, then λ is said to be in
the residual spectrum.

Remark 2.11. One can show that the resolvent set is an open subset of the complex
plane (see [1, Thm.VIII.2, p. 254]) and thus the spectrum is a closed subset of the
complex plane.

The spectrum is one of the most important characteristics of an operator and is of
great interest, especially in physics, as it was illustrated in Section 1. We are now ready
to make an example about the great influence of the domain on the structure of the
spectrum of an unbounded operator.

Example 2.12 (Domain makes huge difference). Consider the set AC[0, 1] of absolutely
continuous functions2 on [0, 1] whose first derivatives are in L2[0, 1]. Let T1 and T2 be
the operator i d

dx with the domains

D(T1) = {ϕ ∈ L2[0, 1] | ϕ ∈ AC[0, 1]},
D(T2) = {ϕ ∈ L2[0, 1] | ϕ ∈ AC[0, 1] and ϕ(0) = 0}.

Both D(T1) and D(T2) are dense in L2[0, 1] and both operators are closed, but

σ(T1) = C 6= ∅ = σ(T2). (2)

Let us just show (2).

(i) Note that e−iλx ∈ D(T1) and (λI − T1)e
−iλx = λe−iλx − i d

dxe−iλx = λe−iλx −
λe−iλx = 0 for every λ ∈ C. Therefore, any λ ∈ C is an eigenvalue and so
σ(T1) = C.

(ii) For determining σ(T2), let us look at the operator Sλ defined by

(Sλg)(x) = i

∫ x

0
e−iλ(x−s)g(s)ds ∀g ∈ D(T2),∀λ ∈ C.

2f is called absolutely continuous on [a, b] if f has a derivative f ′ almost everywhere, the derivative is
Lebesgue integrable, and f(x) = f(a) +

∫ x

a
f ′(t)dt for all x on [a, b].
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For any λ ∈ C we have (λI − T2)Sλ = I = Sλ(λI − T2) on D(T2). Indeed, let
g ∈ D(T2), then

(λI − T2)Sλg(x) = λSλg(x)− i d

dx
i

∫ x

0
e−iλ(x−s)g(s)ds

= λSλg(x) +
d

dx
e−iλx

∫ x

0
eiλsg(s)ds

= λSλg(x)− iλe−iλx
∫ x

0
eiλsg(s)ds+ e−iλxeiλxg(x)

= λSλg(x)− λSλg(x) + g(x) = g(x),

and

Sλ(λI − T2)g(x) = λSλg(x)− iSλg′(x) = λSλg(x)− i2
∫ x

0
e−iλ(x−s)g′(s)ds

= λSλg(x) + [e−iλ(x−s)g(s)]x0 − i
∫ x

0
λe−iλ(x−s)g(s)ds

= λSλg(x) + e−iλ(x−x)︸ ︷︷ ︸
=1

g(x)− e−iλx g(0)︸︷︷︸
=0

−λSλg(x)

= g(x).

Therefore, we found the inverse of (λI −T2) on D(T2), which is therefore bijective.
Because of Remark 2.9 we do not need to prove the boundedness of Sλ and thus
for any λ ∈ C we have λ ∈ ρ(T2) and λ /∈ σ(T2), i.e. σ(T2) = ∅.

We will now introduce another basic definition for this topic.

Definition 2.13. Let T be a densely defined operator on a Hilbert space H.

(i) T is called symmetric (or hermitian) if T ⊂ T ∗, i.e. D(T ) ⊂ D(T ∗), and
Tϕ = T ∗ϕ for all ϕ ∈ D(T ). Equivalently, T is symmetric if and only if

〈Tϕ, ψ〉 = 〈ϕ, T ∗ψ〉 for all ϕ,ψ ∈ D(T ).

(ii) T is called self-adjoint if T = T ∗, that is, if and only if T is symmetric and
D(T ) = D(T ∗).

(iii) T is called essentially self-adjoint if its closure T is self-adjoint.

Remark 2.14. Note that since a symmetric operator T is densely defined and D(T ∗) ⊃
D(T ), we have that D(T ∗) is dense in H. Then by Theorem 2.7(ii) we have that T is
closable. This means that any symmetric operator is always closable. For a symmetric
T , the adjoint T ∗ is a closed extension and the smallest closed extension T ∗∗ of T (see
Theorem 2.7(ii)) must be contained in T ∗. Thus for symmetric operators the relation

T ⊂ T ∗∗ ⊂ T ∗
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holds, while for closed symmetric operators we get

T = T ∗∗ ⊂ T ∗.

For self-adjoint operators this relation reads

T = T ∗∗ = T ∗.

From this, one can easily see that a closed symmetric operator T is self-adjoint if and
only if T ∗ is symmetric.

3 Criteria for the existence of self-adjoint extensions

In this section we focus on some criteria for establishing the self-adjointness of an op-
erator and the existence of self-adjoint extensions. An important tool for that is the
spectrum (see Definition 2.10).

Theorem 3.1. Let T be a closed symmetric operator on a Hilbert space H. Then

(i) dim[Ker(λI − T ∗)] is constant throughout the open upper half-plane.

(ii) dim[Ker(λI − T ∗)] is constant throughout the open lower half-plane.

(iii) The spectrum of T is one of the following:

a) the closed upper half-plane,

b) the closed lower half-plane,

c) the entire plane,

d) a subset of the real axis.

(iv) T is self-adjoint if and only if the dimensions in both (ii) and (i) are zero.

(v) T is self-adjoint if and only if case (iii-d) holds.

Proof. (i,ii): Let λ ∈ C\R, i.e. Imλ 6= 0. Using the symmetry of T we get

‖(λ− T )ϕ‖2 = 〈(Reλ− T )ϕ, (Reλ− T )ϕ〉+ 〈Imλϕ, Imλϕ〉
+ 〈Imλϕ, (Reλ− T )ϕ〉+ 〈(Reλ− T )ϕ, Imλϕ〉︸ ︷︷ ︸

=0

= ‖(Reλ− T )ϕ‖2 + |Imλ|2‖ϕ‖2 ≥ |Imλ|2‖ϕ‖2 (3)

for all ϕ ∈ D(T ). To show that Ran(λ − T ) is closed, let us consider a sequence
(ϕm)n∈N ⊂ D(T ), ϕm → ϕ0 such that (λ − T )ϕm → ψ. Since T is closed we know
Tϕm → Tϕ0 and ϕ0 ∈ D(T ), Tϕ0 in Ran(T ). Thus ψ = λϕ0 − Tϕ0 = (λ − T )ϕ0, i.e.
ψ ∈ Ran(λ − T ) and Ran(λ − T ) is a closed subset of H. Furthermore, let ϕ ∈ D(T ∗),
then

ϕ ∈ Ker(λ− T ∗)⇔ 0 = 〈(λ− T ∗)ϕ,ϕ〉 = 〈ϕ, (λ− T )ϕ〉 ⇔ ϕ ∈ Ran(λ− T )⊥. (4)
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Using (4) one can show that for any λ ∈ C\R there exists a neighbourhood Uλ with
Uλ ∩R = ∅ (i.e. the neighbourhood is completely contained in the same half-plane as λ)
such that for any λ̃ ∈ Uλ we have dim Ker(λ̃ − T ) = dim Ker(λ − T ). This means that
the dimension is constant throughout each of the two open half-planes. Note that the
constant dim Ker(λ− T ) can be different for the upper and lower half-plane.

(iii): Since from (3) we get ‖(λ − T )−1‖ = ‖(λ − T )‖−1 ≤ |Imλ|−1 we know that
λ − T has a bounded inverse if Imλ 6= 0. From (4) we find, that the inverse is defined
everywhere if and only if Ran(λ − T )⊥ = Ker(λ − T ) = {0}, i.e. dim Ker(λ − T ) = 0.
From (ii,i) it follows, that each of the half-planes is either completely in the resolvent
(i.e. (λ− T ) has an everywhere defined, bounded inverse) or in the spectrum. Since we
know from Remark 2.11 that the spectrum is closed, we can construct all the cases in
(iii).

(iv): ” ⇒ ”: Let T be self-adjoint and assume there is λ ∈ C\R such that λ ∈ σ(T ).
Then there is 0 6= ϕ ∈ D(T ∗) = D(T ) such, that Tϕ = λ = T ∗ϕ and we can compute

λ 〈ϕ,ϕ〉 = 〈λϕ, ϕ〉 = 〈Tϕ, ϕ〉 = 〈ϕ, T ∗ϕ〉 = 〈ϕ, λϕ〉 = λ 〈ϕ,ϕ〉 .

Thus we see that 2Imλ 〈ϕ,ϕ〉 = 0, i.e. ϕ = 0 for Imλ 6= 0. Therefore, λ /∈ σ(T ) and
Ker(λ− T ∗) = {0} and dim Ker(λ− T ∗) = 0. This holds regardless the sign of Imλ and
therefore this direction is proven.

”⇐ ”: Assume dim Ker(λ−T ∗) = 0 for all λ ∈ C\R. Then also dim Ker(λ−T ∗) = 0for
all λ ∈ C\R and using (4) we get Ran(λ − T ) = H for case (ii). Let ϕ ∈ D(T ∗), then
there exists a η ∈ D(T ) such, that (λ− T )η = (λ− T ∗)ϕ. Since D(T ) ⊂ D(T ∗) we get
ϕ− η ∈ D(T ∗) and

(λ− T ∗)(ϕ− η) = (λ− T ∗)ϕ− (λ− T ∗)η = (λ− T )η − (λ− T ∗)η = (T ∗ − T )︸ ︷︷ ︸
=0, since T sym.

η = 0.

Since Ker(λ−T ∗) = {0} we get ϕ = η ∈ D(T ), i.e. D(T ) = D(T ∗) and T is self-adjoint.
(v) Case (iii-d) is equivalent to λ ∈ ρ(T ) for all λ ∈ C\R, i.e. Ran(λ− T ) = H. Using

(4) we see that Ker(λ− T ∗) = Ran(λ− T )⊥ = {0} and thus by (iv) this is equivalent to
the self-adjointness of T .

Note that Theorem 3.1(iv) leads to a very basic criterion for self-adjointness:

Corollary 3.2. Let T be a closed symmetric operator on H. T is self-adjoint if and
only if Ker(T ∗ ± i) = {0}.

Furthermore Theorem 3.1(v) gives a very easy criterion:

Corollary 3.3. If a closed symmetric operator T has at least one real number in its
resolvent set, i.e. ρ(T ) ∩ R 6= ∅, then it is self-adjoint.

We now introduce a way to give explicit self-adjoint extensions.
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Definition 3.4 (deficiency subspaces and deficiency indices). Suppose T is a symmetric
operator. Let

K+ = Ker(i− T ∗) = Ran(i+ T )⊥

K− = Ker(i+ T ∗) = Ran(−i+ T )⊥

K+ and K− are called the deficiency subspaces of T . The pair of numbers n+, n−
given by n+(T ) = dim(K+), n−(T ) = dim(K−) are called the deficiency indices of T .

Note that (n+, n−) can take any value in (N0 ∪ {∞})× (N0 ∪ {∞}).

Theorem 3.5. Let T be a closed symmetric operator. The closed symmetric extensions
of T are in one-to-one correspondence with the set of partial isometries (in the usual
inner product) of K+ into K−. If U is such an isometry with domain I(U) ⊆ K+, then
the corresponding closed symmetric extension TU has domain

D(TU ) = {ϕ+ ϕ+ + Uϕ+ | ϕ ∈ D(T ), ϕ+ ∈ I(U)}

and

TU (ϕ+ ϕ+ + Uϕ+) = Tϕ+ iϕ+ − iUϕ+.

If dim I(U) <∞, the deficiency indices of TU are

n±(TU ) = n±(T )− dim I(U).

Proof. [2, Thm.X.2, p.140].

Corollary 3.6. Let T be a closed symmetric operator with deficiency indices n±. Then

(i) T is self-adjoint if and only if n+(T ) = 0 = n−(T ).

(ii) T has self-adjoint extensions if and only if n+(T ) = n−(T ). There is a one-to-one
correspondence between self-adjoint extensions of T and unitary maps from K+

onto K−.

(iii) If either n+(T ) = 0 6= n−(T ) or n−(T ) = 0 6= n+(T ), then T has no nontrivial
symmetric extensions (such operators are called maximal symmetric).

4 Physical example: Schroedinger particle on a half-line

Let (Tϕ)(x) := − d2

dx2
ϕ(x) in L2(0,∞) with domain C∞0 (0,∞), where C∞0 (0,∞) is the

space of all infinitely continuous differentiable functions that tend to zero for x→ 0,∞.
To determine the deficiency indices (see Definition 3.4) we look at Ker(i±T ∗) and so we
look at T ∗ϕ = ±iϕ. Using the theory of differential equations, we can find the infinitely
differentiable solutions

ψ±(x) = e
±(−1+i)x√

2 to T ∗ϕ = +iϕ and

χ±(x) = e
±(1+i)x√

2 to T ∗ϕ = −iϕ.
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Looking at the sign of the real part in the exponential and recalling the Gaussian integral
we see that ψ−, χ+ /∈ L2(0,∞). Thus we find the deficiency indices of T to be (1, 1). We
now want to use Theorem 3.5 to determine explicitly the self-adjoint extensions of T . So

we are looking for isometries that map a multiple of ψ̃ = ψ+/‖ψ+‖ =
√

2e
(−1+i)x√

2 onto a

multiple of χ̃ = χ−/‖χ−‖ =
√

2e
−(1+x)√

2 . Since ψ̃ and χ̃ are normalized the only possible
isometries are maps ψ̃ → γχ̃ where |γ| = 1. We therefore get that the corresponding
self-adjoint extensions are all {Tγ | γ ∈ C, |γ| = 1} with:

D(Tγ) = {ϕ+ βψ̃ + βγχ̃ | ϕ ∈ C∞0 , β ∈ C}.

One can simplify this domain in a clever way. Let f ∈ D(Tγ). By calculating f(0)
and f ′(0) we can show that either ∃α ∈ R such that f ′(0) + αf(0) = 0 (where α
only depends on γ) or f(0) = 0. The latter case corresponds to α = ∞, which is
equivalent to γ = −1. We can also show, that f ∈ AC2[0,∞] := {g ∈ AC[0,∞] |
g is continousely differentiable} and so the domains can be written as

D(Tα) = {f | f ∈ AC2[0,∞], f ′(0) + αf(0) = 0}
D(T∞) = {f | f ∈ AC2[0,∞], f(0) = 0}.

Now let us do some physical interpretation. Since the momentum operator (similar to
the position operator) is given by −i d

dx and −i d
dxe−ikx = −ke−ikx, the function e−ikx

represents a plane wave moving to the left with momentum k > 0. The same argument
leads to the interpretation of eikx as a wave moving right with momentum k. Of course
both e−ikx and eikx are not in L2(0,∞) but, since we are ”lazy physicists”, for now
we are only interested in the behaviour near zero and so we can ignore that. Both
functions are not in D(Tα) as they do not satisfy the boundary conditions for a fixed
α > 0. On the other hand, defining a = ik−α

ik+α the function f(x) = e−ikx + aeikx satisfies
f ′(0) + αf(0) = 0 and thus f ∈ D(Tα) (ignoring the behaviour at ∞).

Physically speaking f is a superposition of an incoming wave and a phase shifted
outgoing wave. Thus the physical interpretation of the boundary condition is that an
incoming wave gets reflected at the origin with a phase change of a(k) = ik−α

ik+α . The case
α = ∞ corresponds to a so-called ”hard wall potential” that results in a phase change
of a = −1 for all momenta.

Since the phase change is different for the different self-adjoint extensions, they all
correspond to different physical systems, that might have completely distinct properties.
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