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Abstract. We consider an incomplete market with general jumps in the given price process S of
a risky asset. We define the S-related dynamic convex valuation (S-related DCV) which is time-
consistent. We discuss the representation for a given S-related DCV C in terms of a ’penalty
functional’ α and give some characteristics of α, which are the sufficient conditions for a given
C to be an S-related DCV. Finally, we give two special forms of α satisfying those conditions
to describe the dynamics of the corresponding S-related DCV by a backward semimartingale
equation.
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1 Introduction

One of the important problems in mathematical finance is the valuation of contingent claims in
incomplete financial markets. Recently, many researchers have studied the utility indifference
valuation method, see Klöppel and Schweizer(2007)[19], Mania and Schweizer (2005)[24], Rouge
and El Karoui (2000)[26], and the references in there. In this paper, we continue our research
on valuations in Xiong and Kohlmann (2008)[27] where a special utility indifference approach is
described. In this paper we avoid the use of a utility function and propose a more direct model
for valuations.
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We consider a financial market similar to the one in Kohlmann and Xiong(2007)[20]. In the
market, there is a risky asset whose discounted price process S = (St; t ∈ [0, T ]) is a semimartin-
gale with bounded jumps. We assume that all the purely discontinuous local martingales are
driven by an integer-valued random measure µ(ω; du, dy) and the continuous martingale part
of S is driven a continuous local martingale M . Under some assumptions, the market is an
incomplete market and we consider the S-related dynamic convex valuation of a contingent
claim B.

Mania and Schweizer (2005)[24] studied the dynamics of the exponential utility indifference
value process C(B;α) for a contingent claim B in a semimartingale model with a general
continuous filtration. One can show even in our jump model that for fixed t ∈ [0, T ] the
exponential utility indifference valuation Ct(B;α) satisfies the desirable properties of a valuation

(A) Monotonicity: Ct(B1;α) ≤ Ct(B2;α) for all B1, B2 ∈ L∞(FT ) with B1 ≤ B2;

(B) Ft-convexity: Ct(λB1+(1−λ)B2;α) ≤ λCt(B1;α)+(1−λ)Ct(B2;α) for all λ ∈ L0(Ft)
with values in [0, 1] and B1, B2 ∈ L∞(FT ) ;

(C) Ft-translation invariance: Ct(B + at;α) = Ct(B;α) + at for all B ∈ L∞(FT ) and
at ∈ L∞(Ft);

(D) Ft-regularity: Ct(B1IA + B2IAc ;α) = Ct(B1;α)IA + Ct(B2;α)IAc for all B1, B2 ∈
L∞(FT ) and A ∈ Ft;

(E) Time consistency: for all B1, B2 ∈ L∞(FT ) and all s ∈ [0, t]

Ct(B1;α) = Ct(B2;α) implies that Cs(B1;α) = Cs(B2;α) .

Such properties are also found in the concept of coherent measures of risk (see Artzner et
al.(1999)[1] or Delbaen(2002)[8]), in the concept of convex measures of risk ( see Föllmer and
Schied(2002)[12] ), and in the concept of dynamic monetary concave utility functionals (DMCUF,
see Klöppel and Schweizer(2007)[19]). Here -for the first time, to the best of our knowledge- we
consider another interesting property

(F) S-related property: for all π ∈ Adm and x ∈ L∞(F0),

Ct(X
x,π
T ) = Xx,π

t , a.s.,

where Xx,π = x+
∫
πudSu is the corresponding wealth process related to (x, π),

and a valuation C = {C(B) = (Ct(B))t∈[o,T ];B ∈ L∞(FT )} satisfying (A)∼(F) will be called
the S-related dynamic convex valuation (S-related DCV). In this way, we incorporate into the
valuation the fact that the value at time t ≤ T of an attainable wealth at time T should be the
wealth itself at time t. Similar to Theorem 3.13 of Klöppel and Schweizer(2007)[19], we obtain
a representation for the S-related DCV as the following
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Theorem 1.1. If C = {C(B) = (Ct(B))t∈[0,T ], B ∈ L∞(FT )} is a dynamic convex valuation
related to S, which is continuous from above at time t, then there exists a ”penalty functional”
α such that for all B ∈ L∞(FT )

Ct(B) = ess sup
Z∈Ze

{
E
[
Zt,TB

∣∣Ft

]
− αt(Zt,T )

}
,

where Ze is the family of the density processes of all equivalent martingale measure. Here, for
each Z ∈ Ze, Zt,T := ZT

Zt
and

αt(Zt,T ) := ess sup
B∈L∞(FT )

{
E
[
Zt,TB

∣∣Ft

]
− Ct(B)

}

is the convex conjugate of Ct.

Different from Klöppel and Schweizer(2007)[19], we here consider the family of the density
processes of all equivalent martingale measures Ze in order to be able to treat the additionally
introduced S-related property. Furthermore, we discuss the property of α and try to give
sufficient conditions for a given α to be the penalty functional of an S-related DCV. Then
we give two special versions of α satisfying those conditions. This then allows to describe the
dynamics of the corresponding S-related DCV by a backward semimartingale equation.

The paper is structured as follows. An incomplete market model with general jumps is
established in section 2. We give the form of the density process of the equivalent martingale
measure and give the definition of the S-related DCV. In section 3, we state a representation
theorem for the S-related DCV by a ’penalty functional’ α, and then we discuss some properties
of α which are the sufficient for α to be the penalty functional of a S-related DCV. In section
4, we give two versions of α satisfying the conditions derived in section 3 and describe the
dynamics of the corresponding S-related DCV by a backward semimartingale equation.

2 The preliminaries

In this paper, we consider the dynamic convex valuation in a market similar to the one in
Kohlmann and Xiong(2007)[20]. We begin with a finite time horizon T > 0 and a complete
probability space (Ω,F , P ). Let F = {Ft, 0 ≤ t ≤ T} be a filtration satisfying the usual
conditions with FT = F . We assume that there exists a risky asset in the market, whose
discounted price S = (St)0≤t≤T is described by a special semimmartingale with bounded jumps.
To describe the dynamics of S, we need the following notations:

• A = (At)0≤t≤T is an F-adapted continuous increasing process with A0 = 0 and EAT <∞;

• M = (Mt)0≤t≤T is a continuous local martingale with 〈M,M〉t = At;

• µ = {µ(ω; dt, dx) : ω ∈ Ω} is an integer-valued random measure on R+ ×R with compen-
sator ν(ω; dt, dx) = dAt(ω)K(ω, t; dx), where K(ω, t; dx) is a kernel from (Ω × R+,P)
into (R,B). Let Ñ(ω; dt, dx) := µ(ω; dt, dx) − ν(ω; dt, dx).

Throughout the paper, we assume that all the jump martingales in the market are driven by
the random measure µ, and that the following representation holds:
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Assumption 2.1. Any purely discontinuous local (P,F)-martingale m can be represented in
the following form

mt = m0 +

∫ t

0

∫

R

ψ(s, x)Ñ (ds, dx).

Remark 2.2.

1. Note that here we do not assume any representation property with respect to the continuous
local martingale. Also the market model discussed in this paper is more general than the market
considered in Kohlmann and Xiong (2007,a)[20].

2. As A is a continuous process, at(ω) := ν(ω, {t}×R) = 0. Thus for all P̃ := P⊗B-measurable
functions W (ω, t, x), let

Ŵt(ω) :=





∫

R

W (ω, t, x)ν(ω; {t} × dx) if

∫

R

|W (ω, t, x)|ν(ω; {t} × dx) <∞
+∞ otherwise ,

then Ŵ = 0. Thus Assumption 2.1 implies that the filtration F is quasi-left continuous.

3. It is easy to see that there exists an F-optional process β = (βt)0≤t≤T and a sequence of stopping

times (τ̂n) such that for all positive P̃-mesurable function W (ω, t, x),

W ∗ µt :=

∫ t

0

∫

R

W (ω, u, x)µ(ω; du, dx) =
∑

(n)

W (τ̂n, βτ̂n
)I{τ̂n≤t}. �

We now describe the market model. We assume that the dynamics of the discounted price
process S are given by

dSt = S0 +

∫ t

0
γudAu +

∫ t

0
σ1(u)dMu +

∫ t

0

∫

R

σ2(u, y)Ñ (du, dy),

where γ and σ1 are two predictable processes with

∫ T

0
σ1(s)

2dAs < ∞ a.s. and σ2(t, y) is a

bounded P̃-measurable function. We assume that there exist two constants k and K such that

∫ T

0
γ2

udAu ≤ K <∞ and σ1(s) ≥ k > 0. (2.1)

Just as in Kohlmann and Xiong(2007,a)[20], let δt =
γt

σ1(t)
to introduce a new measure Q0 by

dQ0

dP

∣∣
F

:= Z0
T ,

where Z0
t = E (−

∫
δudMu)t. From

∫ T

0
δ2udAu ≤ 1

k2

∫ T

0
γ2

udAu ≤ K

k2
< ∞, Z0 is a continuous

uniformly integrable martingale so that Z0S is a local martingale. Thus Q0 is an equivalent
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martingale measure. If we let M̃t := Mt +

∫ t

0
δudAu, it is easy to see that M̃ is a continuous

local Q0-martingale. Hence, under Q0, the discounted price process S can be rewritten as

St = S0 +

∫ t

0
σ1(u)dM̃u +

∫ t

0

∫

R

σ2(u, y)Ñ (du, dy).

Remark 2.3. (1) It follows from Proposition 2.3 of Kohlmann and Xiong (2007)[21] that Q0

satisfies the reverse Hölder inequality RLLOGL(P ), i.e., there exists a constant C such that for
any stopping time τ

E
{
Z0

τ,T logZ0
τ,T

∣∣Fτ

}
≤ C <∞ , (2.2)

where Z0
τ,T =

Z0

T

Z0
τ
. Furthermore, for any B ∈ L∞(FT ), we can define a measure PB as in [9]:

dPB

dP
|FT

:=
eαB

EeαB
.

So the density process of Q0 with respect to PB is given by

Z0,B
t = EPB

{
Z0

T

E(eαB)

eαB

∣∣Ft

}
= E(eαB)

Z0
t

E
{
eαB

∣∣Ft

} ,

and since eαB is bounded, one sees that Q0 satisfies the reverse Hölder inequality RLLOGL(PB),
i.e.,

EPB

{
Z0,B

τ,T logZ0,B
τ,T

∣∣Fτ

}
≤ C <∞ , a.s.

holds for some constant C and all stopping time τ , where Z0,B
τ,T =

Z
0,B

T

Z
0,B
τ

.

(2) Note that the minimal entropy martingale measure, denoted by QE, exists and is equiva-
lent to P according to Frittelli(2000)[13]. �

Let

Z =

{
Z

∣∣∣∣
Z is a nonnegative uniformly integrable martingale with
RCLL paths such that ZS is a local martingale

}
.

For any Z ∈ Z, let τ = inf{t : Zt = 0}. From He, Wang and Yan(1992) τ is a stopping time so
that for all ω ∈ {τ <∞}

Zt(ω) = 0, t ≥ τ(ω),

and for all ω ∈ {τ > 0} and t < τ(ω),

Zt(ω) 6= 0 and Zt−(ω) 6= 0 .

Let Ze =
{
Z ∈ Z;Zt > 0, a.s., for all t ∈ [0, T ]

}
, since Z0 ∈ Ze, we have that Ze 6= ∅.

For all Z ∈ Ze, define Zt,T := ZT

Zt
. We also introduce Z̃t =

Zt

Z0
t

= EQ0

(
ZT

Z0

T

|Ft

)
and Z̃e =

{
Z̃ = Z

Z0 ;Z ∈ Ze

}
. With these notations we can state the following lemma
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Lemma 2.4. For any Z ∈ Ze, there exists a P̃-measurable function l(u, y) with l(u, y) > 1
and a continuous local martingale L strongly orthogonal to M with L0 = 0 such that

Zt = Z0E
{
−
∫ ·

0
{δu + l̃u}dMu +

∫ ·

0

∫

R

l(u, y)Ñ(du, dy) + L
}

t

where l̃u :=

∫

R

σ2(u, y)

σ1(u)
l(u, y)K(u; dy).

Proof. Since Z ∈ Ze, Z can be represented as

Zt = Z0 +

∫ t

0
Zu−dmu

where m is a local martingale with m0 = 0. Since M is a continuous local martingale, there
exists a predictable process ζ and a continuous local martingale L such that mc, the continuous
martingale part of m, can be represented as

mt =

∫ t

0
ζudMu + Lu.

Furthermore, by Assumption 2.1, md, the jump martingale part of m, can be written as

md
t =

∫ t

0

∫

R

l(u, y)Ñ (du, dy),

thus Z is the solution of the following stochastic differential equation

Zt = Z0 +

∫ t

0
Zu−ζudMu +

∫ t

0

∫

R

Zu−l(u, y)Ñ (du, dy) +

∫ t

0
Zu−dLu .

By making use of Itô’s formula, we derive

ZtSt = Z0S0 + Z− · St + S− · Zt + [Z,S]t

= Z0S0 +

∫ t

0
Zu−

{
γu + σ1(u)ζu + σ1(u)l̃u

}
dAu

+

∫ t

0
Zu−

{
σ1(u) + Su−ζu

}
dMu +

∫ t

0
Zu−Su−dLu

+

∫ t

0

∫

R

Zu−

{
σ2(u, y) + Su−l(u, y) + σ2(u, y)l(u, y)

}
Ñ(du, dy) .

Since ZS is a local martingale by the definition of Ze, we finally get

ζu = −δu − l̃u, dAu × dP -a.s.,

thus Zt = Z0E
{
−
∫ ·
0{δu + l̃u}dMu +

∫ ·
0

∫
R
l(u, y)Ñ (du, dy) + L

}
t
.
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Corollary 2.5. For any Z̃ ∈ Z̃e, there exists a P̃-measurable function l(u, y) with l(u, y) > 1

and a continuous local Q0-martingale L strongly Q0-orthogonal to M̃ ( i.e., LM̃ is a continuous
local Q0-martingale ) with L0 = 0 such that

Z̃t = Z0E
{
−
∫ ·

0
l̃udM̃u +

∫ ·

0

∫

R

l(u, y)Ñ (du, dy) + L
}

t

where l̃u :=

∫

R

σ2(u, y)

σ1(u)
l(u, y)K(u; dy).

We consider the following family of the admissible strategies

Adm =

{
π

∣∣∣∣
π = (πu)u∈[0,T ] is a S-integrable predictable process

such that supt∈[0,T ] |
∫ t

0 πudSu| ∈ L∞(FT )

}
,

and for π ∈ Adm and x ∈ L∞(F0), let Xx,π
t := x +

∫ t

0
πudSu be the corresponding wealth

process. We now can give the definition of the dynamic convex valuation related to the price
process S:

Definition. An S-related dynamic convex valuation (S-related DCV) is defined to
be the family {

C(B) :=
{
Ct(B)

}
t∈[0,T ]

; B ∈ L∞(FT )
}

such that

(1) for given B ∈ L∞(FT ), C(B) := {Ct(B)}t∈[0,T ] is a bounded RCLL semimartingale;

(2) for every t ∈ [0, T ], Ct(B) satisfies the following properties:

(A) Monotonicity: Ct(B1) ≤ Ct(B2) for all B1, B2 ∈ L∞(FT ) with B1 ≤ B2;

(B) Ft-convexity: Ct(λB1 + (1−λ)B2) ≤ λCt(B1)+ (1−λ)Ct(B2) for all λ ∈ L0(Ft)
with values in [0, 1] and B1, B2 ∈ L∞(FT ) ;

(C) Ft-translation invariance: Ct(B + at) = Ct(B) + at for all B ∈ L∞(FT ) and
at ∈ L∞(Ft);

(D) Ft-regularity: Ct(B1IA+B2IAc) = Ct(B1)IA+Ct(B2)IAc for allB1, B2 ∈ L∞(FT )
and A ∈ Ft;

(E) Time consistency: for all B1, B2 ∈ L∞(FT ) and all s ∈ [0, t]

Ct(B1) = Ct(B2) implies that Cs(B1) = Cs(B2) ;

(F) S-related property: for all π ∈ Adm and x ∈ L∞(F0),

Ct(X
x,π
T ) = Xx,π

t , a.s.,

where Xx,π = x+
∫
πudSu is the wealth process related to (x, π).
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Example. For a fixed positive constant α > 0 and B ∈ L∞(FT ), introduce

Ct(B;α) :=
1

α
log ess inf

π∈Adm
EQE

(
eα(B−X

x,π
t,T

)
∣∣Ft

)
,

where Xx,π
t,T = Xx,π

T −Xx,π
t =

∫ T

t
πudSu. It easily follows from Mania and Schweizer(2005)[24]

that C(B;α) is an S-related DCV.

3 The representation theorem

We now derive the representation theorem for the S-related DCV of a contingent claim. We
begin with the static case.

Definition. A mapping ρ : L∞(FT ) −→ R is called a static S-related convex valuation
if it satisfies

(i) Monotonicity: ρ(B1) ≤ ρ(B2) for all B1, B2 ∈ L∞(FT ) with B1 ≤ B2;

(ii) Convexity: ρ(λB1 + (1− λ)B2) ≤ λρ(B1) + (1− λ)ρ(B2) for all constant λ in [0, 1] and
B1, B2 ∈ L∞(FT ) ;

(iii) Translation invariance: ρ(B + a) = ρ(B) + a for all B ∈ L∞(FT ) and constant a;

(iv) S-related property: ρ(X0,π
T ) = 0 for all π ∈ Adm.

As in [12], we let Aρ =
{
B ∈ L∞(FT )

∣∣ρ(B) ≤ 0
}
, so that Aρ is a convex set.

Lemma 3.1. Assume that ρ : L∞(FT ) −→ R is a static S-related convex valuation and Aρ

is σ(L∞(Q0), L1(Q0))-closed, then there exists a ”penalty functional” α̂ such that for every
B ∈ L∞(FT )

ρ(B) = sup
Z∈Z

{E[Z0,TB] − α̂(Z)},

where α̂ is the convex conjugate of ρ, i.e.,

α̂(Z) := sup
B∈L∞(FT )

{E [Z0,TB] − ρ(B)} .

Proof. The idea is the same as in the proof of Theorem 5 of [12]. It is easy to see that

α̂(Z) = sup
B∈Aρ

{E [Z0,TB]} ,

and for any B ∈ L∞(FT ) and Z ∈ Z,

E[Z0,TB] − α̂(Z) ≤ E[Z0,TB] − {E[Z0,TB] − ρ(B)} = ρ(B).

Thus we must show that for any m ∈ R such that

m > sup
Z∈Z

{E[Z0,TB] − α̂(Z)},
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we have m ≥ ρ(B), i.e., B −m ∈ Aρ. Suppose that, on the contrary, B −m /∈ Aρ. Since Aρ is
a σ(L∞(Q0), L1(Q0))-closed convex set one can find a linear functional ℓ such that

β := sup
B∈Aρ

ℓ(B) < ℓ(B −m) =: γ <∞.

We claim that

1. ℓ is a positive linear functional;

2. for any π ∈ Adm, ℓ(X0,π
T ) = 0.

In fact, for any B ∈ L∞(FT ) with B ≥ 0, one can see that for all λ ≥ 0, ρ(−λB) ≤ ρ(0) = 0,
thus −λB ∈ Aρ and

γ > ℓ(−λB) = −λℓ(B),

it follows by taking λ ↑ ∞ that ℓ(B) ≥ 0. Further more, if there exists a π∗ ∈ Adm such that

ℓ(X0,π∗

T ) 6= 0, let c = γ

ℓ(X0,π∗

T
)
, then ℓ(cX0,π∗

T ) = γ, which is a contradiction to cX0,π∗

T ∈ Aρ.

Therefore, there exists a ξ ∈ L1(Q0,FT ) with ξ ≥ 0 such that

ℓ(B) = EQ0[Bξ]

holds for all B ∈ L∞(FT ). Since E[|Z0
T ξ|] = EQ0(ξ) <∞, let

Ẑt = E
(
Z0

T ξ
∣∣Ft

)
,

one gets that Ẑ is a nonnegative uniformly integrable martingale which has an RCLL version,
still denoted by Ẑ. Since S is a local bounded semimartingale, there exists a sequence of
stopping times (τn) such that Sτn is bounded for each n. For any stopping time τ ≤ T

E[Ẑτ∧τnSτ∧τn ] = E[ẐTSτ∧τn ] = ℓ(

∫ T

0
I[[0,τ∧τn]](u)dSu) = 0,

thus ẐτnSτn is a true martingale for each n and ẐS is a local martingale under P . Thus Ẑ ∈ Z

and

α̂(Ẑ) = sup
B∈Aρ

{
E
[
Ẑ0,TB

]}
=

1

Ẑ0

sup
B∈Aρ

ℓ(B) =
1

Ẑ0

β ,

thus

α̂(Ẑ) <
1

Ẑ0

ℓ(B −m) =
1

Ẑ0

EQ0
[Bξ] −m = E[BẐ0,T ] −m,

which is a contradiction to the choice of m. Thus B −m ∈ Aρ and thus m ≥ ρ(B).

Definition. We call a dynamic convex valuation C continuous from above at time t, if
for any uniformly bounded sequence (Bn)n∈N ⊂ L∞(FT ) decreasing to some B ∈ L∞(FT ), we
have

lim
n→∞

Ct(Bn) = Ct(B) .
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By a similar argument as in Theorem 3.13 of Klöppel and Schweizer(2007)[19], we can state
the following theorem

Theorem 1.1. If C = {C(B) = (Ct(B))t∈[0,T ], B ∈ L∞(FT )} is a dynamic convex valuation
related to S, which is continuous from above at time t, there exists a ”penalty functional” α
such that for all B ∈ L∞(FT )

Ct(B) = ess sup
Z∈Ze

{
E
[
Zt,TB

∣∣Ft

]
− αt(Zt,T )

}
,

where Zt,T = ZT

Zt
and

αt(Zt,T ) := ess sup
B∈L∞(FT )

{
E
[
Zt,TB

∣∣Ft

]
− Ct(B)

}

is the convex conjugate of Ct.

Proof. For every Z ∈ Ze and B ∈ L∞(FT ),

E
[
Zt,TB

∣∣Ft

]
− αt(Zt,T ) = E

[
Zt,TB

∣∣Ft

]
− ess sup

B∈L∞(FT )

{
E
[
Zt,TB

∣∣Ft

]
−Ct(B)

}

≤ E
[
Zt,TB

∣∣Ft

]
−
{
E
[
Zt,TB

∣∣Ft

]
− Ct(B)

}

= Ct(B),

thus
Ct(B) ≥ ess sup

Z∈Ze

{
E
[
Zt,TB

∣∣Ft

]
− αt(Zt,T )

}
.

We only need to prove that for all B ∈ L∞(FT )

EQ0[Ct(B)] ≤ EQ0

[
ess sup
Z∈Ze

{
E
[
Zt,TB

∣∣Ft

]
− αt(Zt,T )

}]
. (3.1)

Let ρt(B) = EQ0[Ct(B)], then ρt(B) is continuous from above and thus A′
t := {B; ρt(B) ≤ 0}

is σ(L∞(Q0,FT ), L1(Q0,FT ))-closed. Therefore, ρt can be represented into the following form

ρt(B) = sup
Z∈Z

{E[Z0,TB] − α̂t(Z)},

where α̂t is given by
α̂t(Z) = sup

B∈L∞(FT )
{E(Z0,TB) − ρt(B)} .

For Z ∈ Ze let
Ẑs = Z0

s Is<t + Z0
t Zt,sIs>t,

and Zt = {Ẑ;Z ∈ Ze}. So Zt ⊆ Ze ⊂ Z and

ρt(B) ≥ sup
Z∈Zt

{E[Z0,TB] − α̂t(Z)}.
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For any Z ∈ Z with Z /∈ Zt, there exists an Ft-measurable set A such that E(Z0,tIA) 6=
E(Z0

t IA). Thus for any constant λ, ρt(λIA) = EQ0(Ct(λIA)) = λE(Z0
t IA) and

α̂t(Z) ≥ sup
λ∈R

{λE(Z0,T IA) − ρt(λIA)}
= sup

λ∈R

{
λ
(
E(Z0,tIA) − E(Z0

t IA)
)}

= ∞.

Therefore,
ρt(B) = sup

Z∈Zt

{E[Z0,TB] − α̂t(Z)}. (3.2)

From the Ft-regularity of Ct, {E(Zt,TB
∣∣Ft)−Ct(B);B ∈ L∞(FT )} is closed by ∨, thus there

exists a sequence (Bn)n∈N ⊆ L∞(FT ) such that

αt(Zt,T ) = ess sup
B∈L∞(FT )

{E(Zt,TBn

∣∣Ft) − Ct(Bn)}

=ր lim
n→∞

E(Zt,TBn

∣∣Ft) − Ct(Bn).

Since Z0,t = Z0
t for all Z ∈ Zt, it follows from the monotone convergence theorem that

E[Z0
t αt(Zt,T )] = E[Z0,tαt(Zt,T )]

=ր lim
n→∞

E
{
Z0,t

(
E(Zt,TBn

∣∣Ft) − Ct(Bn)
)}

≤ sup
B∈L∞(FT )

{
E(Z0,TB) − EQ0[Ct(B)]

}

= α̂t(Z).

Combining with (3.2), one gets

EQ0[Ct(B)] = ρt(B) = sup
Z∈Zt

{E[Z0,TB] − α̂t(Z)}

≤ sup
Z∈Zt

{E[Z0
t Zt,TB] − E[Z0

t αt(Zt,T )]}
= sup

Z∈Zt

{
EQ0

[
E(Zt,TB

∣∣Ft) − αt(Zt,T )
]}

≤ EQ0

[
ess sup
Z∈Ze

{
E(Zt,TB

∣∣Ft) − αt(Zt,T )
}]
,

and hence (3.1).

Remark 3.2.

1. Since for π ∈ Adm, Ct(X
x,π
T ) = Xx,π

t , so

Xx,π
t = Ct(X

x,π
T )

= ess sup
Z∈Ze

{
E
[
Zt,TX

x,π
T

∣∣Ft

]
− αt(Zt,T )

}

= Xx,π
t − ess inf

Z∈Ze

{αt(Zt,T )} .

So
ess inf
Z∈Ze

{αt(Zt,T )} = 0 . (3.3)
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2. From the proof of Theorem 1.1, one can see that for every Z ∈ Ze, and there exists a sequence
(Bt

n)n∈N ⊆ L∞(FT ),which may depend on t, such that

αt(Zt,T ) =ր lim
n→∞

E(Zt,TB
t
n

∣∣Ft) − Ct(B
t
n). (3.4)

3. Let At := {B;Ct(B) ≤ 0}, then

αt(Zt,T ) = ess sup
B∈At

{
E
[
Zt,TB

∣∣Ft

]}
. (3.5)

By the time-consistency of C, At ⊆ As for all s ≤ t. As Ct(Ct(B)) = Ct(B), we have for all
s ≤ t

Cs(Ct(B)) = Cs(B),

and similar to [19], one can show that the time-consistency is equivalent to the following

As = As(Ft) + At, (3.6)

where As(Ft) = As ∩ L∞(F∞).

For any Zi ∈ Ze, i = 1, 2 and A ∈ Ft, let

Zs := Z1
s Is<t + {Z1

s IA + Z1
t Z

2
t,sIAc}Is≥t,

one can see that Z ∈ Ze and Zt,T = Z1
t,T IA + Z2

t,T IAc . We have the following Lemma

Lemma 3.3. Under the conditions of Theorem 1.1, for any Zi ∈ Ze, i = 1, 2 and A ∈ Ft, we
have

αt(Z
1
t,T IA + Z2

t,T IAc) = αt(Z
1
t,T )IA + αt(Z

2
t,T )IAc .

Proof. By direct calculation, one can see

αt(Z
1
t,T IA + Z2

t,T IAc) = ess sup
B∈L∞(FT )

{
E
[
(Z1

t,T IA + Z2
t,T IAc)B

∣∣Ft

]
− Ct(B)

}

= ess sup
B∈L∞(FT )

{{
E[Z1

t,TB
∣∣Ft] − Ct(B)

}
IA +

{
E[Z2

t,TB
∣∣Ft] − Ct(B)

}
IAc

}

≤ ess sup
B∈L∞(FT )

{
E
[
Z1

t,TB
∣∣Ft

]
− Ct(B)

}
IA + ess sup

B∈L∞(FT )

{
E
[
Z2

t,TB
∣∣Ft

]
− Ct(B)

}
IAc

= αt(Z
1
t,T )IA + αt(Z

2
t,T )IAc .

On the other hand, for any Bi ∈ L∞(FT ), i = 1, 2, let B = B1IA +B2IAc , which also belongs
to L∞(FT ). It follows from the Ft-regularity of Ct that

αt(Z
1
t,T IA + Z2

t,T IAc) ≥ E
[
(Z1

t,T IA + Z2
t,T IAc)B

∣∣Ft

]
− Ct(B)

=
{
E[Z1

t,TB
1
∣∣Ft] − Ct(B

1)
}
IA +

{
E[Z2

t,TB
∣∣Ft] − Ct(B)

}
IAc ,

thus αt(Z
1
t,T IA + Z2

t,T IAc) ≥ αt(Z
1
t,T )IA + αt(Z

2
t,T )IAc and the proof is complete.



3 THE REPRESENTATION THEOREM 13

For any Zi ∈ Ze, i = 1, 2, let

A =
{
E(Z1

t,TB
∣∣Ft) − αt(Z

1
t,T ) ≥ E(Z2

t,TB
∣∣Ft) − αt(Z

2
t,T )
}
,

one can see that A ∈ Ft and

Zs := Z1
s Is<t + {Z1

s IA + Z1
t Z

2
t,sIAc}Is≥t

also belongs to Ze and Zt,T = Z1
t,T IA + Z2

t,T IAc . It follows from Lemma 3.3 that αt(Zt,T ) =

αt(Z
1
t,T )IA + αt(Z

2
t,T )IAc and thus

E(Zt,TB
∣∣Ft) − αt(Zt,T ) =

{
E(Z1

t,TB
∣∣Ft) − αt(Z

1
t,T )
}
IA +

{
E(Z2

t,TB
∣∣Ft) − αt(Z

2
t,T )
}
IAc

=
{
E(Z1

t,TB
∣∣Ft) − αt(Z

1
t,T )
}∨{

E(Z2
t,TB

∣∣Ft) − αt(Z
2
t,T )
}
,

from which one can see that the set
{
E(Zt,TB

∣∣Ft) − αt(Zt,T );Z ∈ Ze

}
is closed under ∨, thus

we have the following corollary

Corollary 3.4. Under the conditions of Theorem 1.1, for every B ∈ L∞(FT ), there exists a
sequence (Zn)n∈N ⊆ Ze such that

Ct(B) =ր lim
n→∞

E(Zn
t,TB

∣∣Ft) − αt(Z
n
t,T ).

Lemma 3.5. Under the conditions of Theorem 1.1, for all Z ∈ Ze and s < t, we have

Zsαs(Zs,T ) = E
[
Ztαt(Zt,T )

∣∣Fs

]
+ ess sup

B∈As(Ft)
E
[
ZtB

∣∣Fs

]
, (3.7)

where As(Ft) = As ∩ L∞(Ft).

Proof. It follows from (3.6) that any B ∈ As can be decomposed into the following

B = B1 +B2,

where B1 ∈ As(Ft) and B2 ∈ At. Therefore,

E
[
ZTB

∣∣Fs

]
= E

[
ZtB1

∣∣Fs

]
+ E

[
E[ZTB2

∣∣Ft]
∣∣Fs

]

≤ ess sup
B∈As(Ft)

E
[
ZtB

∣∣Fs

]
+ E

[
ess sup
B∈At

E[ZTB
∣∣Ft]

∣∣∣∣Fs

]

= ess sup
B∈As(Ft)

E
[
ZtB

∣∣Fs

]
+ E

[
Ztαt(Zt,T )

∣∣Fs

]
,

thus Zsαs(Zs,T ) ≤ E
[
Ztαt(Zt,T )

∣∣Fs

]
+ ess sup

B∈As(Ft)
E
[
ZtB

∣∣Fs

]
. On the other hand, there exists

a sequence Bt
n ∈ L∞ such that

αt(Zt,T ) =ր lim
n→∞

E[Zt,TB
t
n|Ft] .
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We need to show that

E[Ztαt(Zt,T )
∣∣Fs] =ր lim

n→∞
E
[
ZTB

t
n

∣∣Fs

]
. (3.8)

It is easy to see that
{
E
[
ZTB

t
n

∣∣Fs

]
;n ∈ N

}
is an increasing sequence and for each n

E
[
ZTB

t
n

∣∣Fs

]
≤ E[Ztαt(Zt,T )

∣∣Fs].

Since Bt
1 ∈ L∞(FT ), there exists a constant c such that Bt

1 ≥ c, thus for each A ∈ Fs

E
[
E[ZTB

t
1|Ft]IA

]
= E

[
E[ZTB

t
1|Fs]IA

]
≥ cE[ZsIA] > −∞

From the monotone convergence theorem we get

E[Ztαt(Zt,T )IA] = limn→∞E
[
E[ZTB

t
n|Ft]IA

]

= limn→∞E
[
E[ZTB

t
n|Fs]IA

]

= E
[
ր limn→∞E[ZTB

t
n|Fs]IA

]

holds for every A ∈ Fs, thus E[Ztαt(Zt,T )|Fs] =ր limn→∞E[ZTB
t
n|Fs], which is (3.8). For

each B1 ∈ As(Ft), let Bn := B1 +Bt
n ∈ As, thus

E
[
ZtB1

∣∣Fs

]
+ E

[
Ztαt(Zt,T )

∣∣Fs

]
= E

[
ZTB1

∣∣Fs

]
+ ր lim

n→∞
E
[
ZTB

t
n

∣∣Fs

]

=ր lim
n→∞

E
[
ZTB

n
∣∣Fs

]

≤ ess sup
B∈As

E
[
ZTB

∣∣Fs

]

= Zsαs(Zs,T ).

The arbitrariness of B1 gives

E
[
Ztαt(Zt,T )

∣∣Fs

]
+ ess sup

B∈As(Ft)
E
[
ZtB

∣∣Fs

]
Zs ≤ αs(Zs,T )

and the proof is complete.

Corollary 3.6. Under the conditions of Theorem 1.1, for every Z ∈ Ze, {Ztαt(Zt,T )}t∈[0,T ] is
a nonnegative supermartingale with terminal value ZTαT (ZT,T ) = 0.

Remark 3.7. Under the conditions of Theorem 1.1, for all Z ∈ Ze and s, t ∈ [0, T ] with s < t,
let αs(Zs,t) := ess supB∈As(Ft)E

[
Zs,tB

∣∣Fs

]
, then (3.7) can be rewritten as

Zsαs(Zs,T ) = E
[
Ztαt(Zt,T )

∣∣Fs

]
+ Zsαs(Zs,t).

We have the following theorem

Theorem 3.8. Given a family of convex nonnegative functionals

α =
{
α(Z) =

(
αs(Zs,t)

)
0≤s<t≤T

; Z ∈ Ze

}

such that αs,t : Ze −→ L0 (Fs, [0,∞)) with E[Zs,tαt(Zt,T )] < ∞ for any Z ∈ Ze and 0 ≤ s <
t ≤ T satisfies
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(i) αs(Zs,T ) = αs(Zs,t) + E[Zs,tαt(Zt,T )|Fs], for each Z ∈ Ze and 0 ≤ s < t ≤ T ;

(ii) ess inf
Z∈Ze

{αt(Zt,T )} = 0, for each t ∈ [0, T ];

(iii) for any Zi ∈ Ze, i = 1, 2 and A ∈ Ft, let Zs = Z1
s Is<t + Z1

t {Z1
t,sIA + Z2

t,sIAc}Is≥t, then
αt(Zt,T ) = αt(Z

1
t,T )IA + αt(Z

2
t,T )IAc ;

(iv) limhց0 αt(Zt,t+h) = 0, for Z ∈ Ze and t ∈ [0, T ),

then C = {C(B) = (Ct(B))t∈[0,T ], B ∈ L∞(FT )} defined by

Ct(B) = ess sup
Z∈Ze

{
E
[
Zt,TB

∣∣Ft

]
− αt(Zt,T )

}
(3.9)

is an S-related dynamic convex valuation.

Remark 3.9. 1) It follows from (iii) that for any Zi ∈ Ze, i = 1, 2 and Ẑu = Z1
uIu<t +

Z1
t Z

2
t,uIu≥t, then

αt(Ẑt,T ) = αt(Z
2
t,T ).

2) From (i) and (ii), for any s < t

0 = ess inf
Z∈Ze

{αs(Zs,T )} ≥ ess inf
Z∈Ze

{αs(Zs,t)} + ess inf
Z∈Ze

E[Zs,tαt(Zt,T )|Fs],

which implies that

ess inf
Z∈Ze

{αs(Zs,t)} = 0 and ess inf
Z∈Ze

E[Zs,tαt(Zt,T )|Fs] = 0.

3) Since
{
E
[
Zt,TB

∣∣Ft

]
− αt(Zt,T );Z ∈ Ze

}
is closed under ∨, there exists a sequence (Zn)n∈N ⊂

Ze such that
Ct(B) =ր lim

n→∞
E
[
Zn

t,TB
∣∣Ft

]
− αt(Z

n
t,T ) .

4) Under the conditions of Theorem 3.8, for any s < t and B ∈ L∞(Ft), we have

Cs(B) = ess sup
Z∈Ze

{
E
[
Zs,tB

∣∣Fs

]
− αs(Zs,t)

}
. (3.10)

In fact,
Cs(B) = ess supZ∈Ze

{
E
[
Zs,TB

∣∣Fs

]
− αs(Zs,T )

}

≤ ess supZ∈Ze

{
E
[
Zs,tB

∣∣Fs

]
− αs(Zs,t)

}
,

since αs(Zs,T ) ≥ αs(Zs,t) ≥ 0. On the other hand, for any Zi ∈ Ze, i = 1, 2, let Ẑu =
Z1

uIu<t + Z1
t Z

2
t,uIu≥t, it follows from (i) that

Cs(B) ≥ E
(
Ẑs,TB

∣∣Fs

)
− αs(Ẑs,T )

= E
[
Ẑs,tB

∣∣Fs

]
− αs(Ẑs,t) − E

[
Ẑs,tαt(Ẑt,T )

∣∣Fs

]

= E
(
Z1

s,tB
∣∣Fs

)
− αs(Z

1
s,t) − E

(
Z1

s,tαt(Z
2
t,T )
∣∣Fs

)
,
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holds for all Z2 ∈ Ze, thus

Cs(B) ≥ E
(
Z1

s,tB
∣∣Fs

)
− αs(Z

1
s,t) − E

[
Z1

s,t ess inf
Z∈Ze

αt(Zt,T )
∣∣Fs

]

= E
(
Z1

s,tB
∣∣Fs

)
− αs(Z

1
s,t),

therefore Cs(B) ≥ ess sup
Z∈Ze

{
E
[
Zs,tB

∣∣Fs

]
− αs(Zs,t)

}
, and (3.10) follows.

Lemma 3.10. Under the conditions of Theorem 3.8, for any B ∈ L∞(FT ), C(B) defined

by (3.9) is a bounded RCLL semimartingale such that
{
Ẑt

(
Ct(B) + αt(Ẑt,T )

)
; t ∈ [0, T ]

}
is a

supermartingale for any Ẑ ∈ Ze .

Proof. For any Ẑ ∈ Ze, let

Zt(Ẑ) :=
{
Z ∈ Ze; ZI[[0,t]] = ẐI[[0,t]]

}
,

so that Zt(Ẑ) ⊂ Zs(Ẑ) for every s < t, and for every Z ∈ Zt(Ẑ), Z can be rewritten as

Zu = ẐuIu<t + ẐtZt,T Iu≥T

and thus αs(Zs,T ) = αs(Ẑs,t) + E
[
Ẑs,tαt(Zt,T )

∣∣Fs

]
. Therefore,

Ẑs

(
Cs(B) + αs(Ẑs,T )

)
= Ẑs ess sup

Z∈Ze

{
E
[
Zs,TB

∣∣Fs

]
− αs(Zs,T )

}
+ Ẑsαs(Ẑs,T )

= ess sup
Z∈Zs(Ẑ)

{
E
[
ZTB

∣∣Fs

]
− Ẑsαs(Zs,T ) + Ẑsαs(Ẑs,T )

}

≥ ess sup
Z∈Zt(Ẑ)

{
E
[
ZTB

∣∣Fs

]
− Ẑsαs(Zs,T ) + Ẑsαs(Ẑs,T )

}

= ess sup
Z∈Zt(Ẑ)

{
E
[
ZTB

∣∣Fs

]
− Ẑsαs(Ẑs,t) − ẐsE

[
Ẑs,tαt(Zt,T )

∣∣Fs

]

+Ẑsαs(Ẑs,t) + ẐsE
[
Ẑs,tαt(Ẑt,T )

∣∣Fs

]}

= ess sup
Z∈Zt(Ẑ)

{
E
[
ZTB

∣∣Fs

]
− E

[
Ẑtαt(Zt,T )

∣∣Fs

]
+ E

[
Ẑtαt(Ẑt,T )

∣∣Fs

]}
.

From Remark 3.9 3), one can choose a sequence (Zn)n∈N ⊂ Zt(Ẑ) such that

Ct(B) =ր lim
n→∞

E[Zn
t,TB|Ft] − αt(Z

n
t,T ) .

It follows from the monotone convergence theorem that

Ẑs

(
Cs(B) + αs(Ẑs,T )

)
≥ ess sup

Z∈Zt(Ẑ)

{
E
[
ZTB

∣∣Fs

]
− E

[
Ẑtαt(Zt,T )

∣∣Fs

]
+ E

[
Ẑtαt(Ẑt,T )

∣∣Fs

]}

≥ lim
n→∞

E
{
Ẑt

{
E
[
Zn

t,TB
∣∣Ft

]
− αt(Z

n
t,T )
} ∣∣Fs

}
+ E

[
Ẑtαt(Ẑt,T )

∣∣Fs

]

= E
{
Ẑt ր lim

n→∞

{
E
[
Zn

t,TB
∣∣Ft

]
− αt(Z

n
t,T )
} ∣∣Fs

}
+ E

[
Ẑtαt(Ẑt,T )

∣∣Fs

]

= E
{
Ẑt

{
Ct(B) + αt(Ẑt,T )

}∣∣Fs

]
,
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thus
{
Ẑt

(
Ct(B) + αt(Ẑt,T )

)
; t ∈ [0, T ]

}
is a supermartingale. Similar to El Karoui and Quenez

(1995)[11] or Laurent and Pham (1999)[22], one can show that
{
Ẑt

(
Ct(B) + αt(Ẑt,T )

)
; t ∈ [0, T ]

}

has an RCLL version. As Ẑα(Ẑ) := {Ẑtαt(Ẑt,T ); t ∈ [0, T ]} is also an RCLL supermartingale,
thus C(B) has an RCLL version.

Corollary 3.11. Under the conditions of Theorem 3.8, if there exists Ẑ ∈ Ze such that
Ẑt(Ct(B) + αt(Ẑt,T )) is a uniformly integrable martingale, then for every t ∈ [0, T ]

Ct(B) = E
[
Ẑt,TB

∣∣Ft

]
− αt(Ẑt,T ), a.s.

Proof of Theorem 3.8. One can easily check that C defined by (3.9) satisfies (A), (B) and
(C) in the definition of the S-related DCV. For any A ∈ Ft and Bi ∈ L∞(FT ), i = 1, 2,

E
[
Zt,T (B1IA +B2IAc)

∣∣Ft

]
− αt(Zt,T )

=
{
E
[
Zt,TB1

∣∣Ft

]
− αt(Zt,T )

}
IA +

{
E
[
Zt,TB2

∣∣Ft

]
− αt(Zt,T )

}
IAc

≤ ess sup
Z∈Ze

{
E
[
Zt,TB1

∣∣Ft

]
− αt(Zt,T )

}
IA + ess sup

Z∈Ze

{
E
[
Zt,TB2

∣∣Ft

]
− αt(Zt,T )

}
IAc

= Ct(B1)IA + Ct(B2)IAc ,

thus Ct(B1IA + B2IAc) ≤ Ct(B1)IA + Ct(B2)IAc . On the other hand, for any Zi ∈ Ze, i =
1, 2, let B̂ = B1IA + B2IAc and Ẑs = Z1

s Is<t + Z1
t {Z1

t,sIA + Z2
t,sIAc}Is≥t, from (iii), one gets

αt(Ẑt,T ) = αt(Z
1
t,T )IA + αt(Z

2
t,T )IAc and Ẑt,T = Z1

t,T IA + Z2
t,T IAc . Therefore,

Ct(B̂) = ess sup
Z∈Ze

{
E
[
Zt,TB

∣∣Ft

]
− αt(Zt,T )

}

≥ E
[
Ẑt,T B̂

∣∣Ft

]
− αt(Ẑt,T )

=
{
E
[
Z1

t,TB1

∣∣Ft

]
− αt(Z

1
t,T )
}
IA +

{
E
[
Z2

t,TB2

∣∣Ft

]
− αt(Z

2
t,T )
}
IAc ,

thus Ct(B1IA + B2IAc) ≥ Ct(B1)IA + Ct(B2)IAc , which implies that Ct(B) satisfies (D), i.e.,
the Ft-regularity. For any π ∈ Adm and t ∈ [0, T ], it follows from (ii) that

Ct(X
0,π
T ) = ess sup

Z∈Ze

{
E
[
Zt,TX

0,π
T

∣∣Ft

]
− αt(Zt,T )

}
= X0,π

t − ess inf
Z∈Ze

{αt(Zt,T )} = X0,π
t ,

and the S-related property of C follows. We now show the time consistency of C, i.e., for any
s < t and B ∈ L∞(FT ), it follows from (i) and (3.10) that

Cs(Ct(B)) = ess sup
Z∈Ze

{
E
[
Zs,tCt(B)

∣∣Fs

]
− αs(Zs,t)

}

≥ ess sup
Z∈Ze

{
E
[
Zs,tE(Zt,TB|Ft) − Zs,tαt(Zt,T )

∣∣Fs

]
− αs(Zs,t)

}

= ess sup
Z∈Ze

{
E
[
Zs,tZt,TB

∣∣Fs

]
− E

[
Zs,tαt(Zt,T )

∣∣Fs

]
− αs(Zs,t)

}

= ess sup
Z∈Ze

{
E
[
Zs,TB

∣∣Fs

]
− αs(Zs,T )

}

= Cs(B).

(3.11)
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On the other hand, there exists a sequence (Zn)n∈N ⊂ Ze such that

Ct(B) =ր lim
n→∞

E
[
Zn

t,TB
∣∣Ft

]
− αt(Z

n
t,T ) ,

thus for any Z ∈ Ze, let Ẑn
u = ZuIu<t + ZtZ

n
t,uIu≥t, then

E
[
Zs,t

{
E(Zn

t,TB|Ft) − αt(Z
n
t,T )
} ∣∣Fs

]
− αs(Zs,t)

= E[Zs,tZ
n
t,TB

∣∣Ft] − E
[
Zs,tαt(Z

n
t,T )
∣∣Fs

]
− αs(Zs,t)

= E[Ẑn
s,TB

∣∣Ft] −E
[
Ẑn

s,tαt(Ẑ
n
t,T )
∣∣Fs

]
− αs(Ẑ

n
s,t)

= E[Ẑn
s,TB

∣∣Ft] − αs(Ẑ
n
s,T )

≤ ess sup
Z∈Ze

{E[Zs,TB
∣∣Ft] − αs(Zs,T )}

= Cs(B) .

From an analogous argument as in the proof of Lemma 3.5, one can derive

E
[
Zs,tCt(B)

∣∣Fs

]
−αs(Zs,t) =ր lim

n→∞
E
[
Zs,t

{
E(Zn

t,TB|Ft) − αt(Z
n
t,T )
} ∣∣Fs

]
−αs(Zs,t) ≤ Cs(B),

thus
Cs(Ct(B)) = ess sup

Z∈Ze

{
E
[
Zs,tCt(B)

∣∣Fs

]
− αs(Zs,t)

}
≤ Cs(B). (3.12)

From (3.11) and (3.12), we have
Cs(Ct(B)) = Cs(B)

and the time consistency follows.

4 Two S-related DCVs generated by α̃ and α̂

In this section we will consider two special penalty functionals α̃ and α̂ satisfying the conditions
of Theorem 3.8, and the corresponding S-related dynamic convex valuations generated by α̃
and α̂ denoted by C̃ and Ĉ respectively. We then describe the dynamics of C̃ and Ĉ by two
backward semimartingale equations.

For any Z ∈ Ze, it follows from Corollary 2.5 that Z̃t :=
Zt

Z0
t

can be represented in the

following form

Z̃t = Z0E
{
−
∫ ·

0
l̃udM̃u +

∫ ·

0

∫

R

l(u, y)Ñ (du, dy) + L
}

t
,

where l(u, y) is a P̃-measurable function with l(u, y) > 1 and L a continuous local Q0-

martingale strongly Q0-orthogonal to M̃ with L0 = 0. For any s < t

Z̃s,t = 1 −
∫

]s,t]
Z̃s,u− l̃udM̃u +

∫

]s,t]

∫

R

Z̃s,u−l(u, y)Ñ (du, dy) +

∫

]s,t]
Z̃s,u−dLu,
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where Z̃s,t =
Z̃t

Z̃s

and Z̃s,u− =
Z̃u−

Z̃s

for s < u. Given two predictable processes ξ and η with

0 < c ≤ ξu ≤ C < ∞ and 0 < c ≤ η ≤ C < ∞ and a P̃-measurable function ξ(u, y) with
0 < c ≤ ξ(u, y) ≤ C <∞, where c and C are two positive constants, we define for each Z̃ ∈ Z̃e

α̃s(Z̃s,t) := EQ0

(∫

]s,t]
Z̃s,u−ξu(l̃u)2dAu +

∫

]s,t]
Z̃s,u−ηud〈L〉u

∣∣Fs

)
(4.1)

and

α̂s(Z̃s,t) := EQ0

(∫

]s,t]

∫

R

Z̃s,u−ξ(u, y)l(u, y)
2K(u; dy)dAu +

∫

]s,t]
Z̃s,u−ηud〈L〉u

∣∣Fs

)
. (4.2)

4.1 The S-related DCV generated by α̃

To consider the S-related dynamic convex valuation generated by α̃, we introduce

Z :=
{
Z̃ ∈ Z̃e; α̃0(Z̃0,T ) <∞

}

Lemma 4.1. For any Z̃i ∈ Z , i = 1, 2 and an Ft-measurable set D, let Z̃u = Z̃1
uIu<t +

Z̃1
t {Z̃1

t,uID + Z̃2
t,uIDc}Iu≥t, then Z̃ ∈ Z .

Proof. One can easily see that Z̃ ∈ Z̃e. From

EQ0

[
α̃0(Z̃0,T )

]
≤ EQ0

[
α̃0(Z̃

1
0,T )

]
+ EQ0

[
α̃0(Z̃

2
0,T )

]
<∞,

one can see that Z̃ ∈ Z .

It is easy to see that for each Z̃ ∈ Z and s < t

ess inf
Z̃∈Z

{
α̃s(Z̃s,t)

}
= 0, (4.3)

and
α̃s(Z̃s,T ) = α̃s(Z̃s,t) + EQ0[Z̃s,tα̃t(Z̃t,T )

∣∣Fs], a.s. (4.4)

One can easily check that

(iii’) for any Z̃i ∈ Z , i = 1, 2 and a Ft-measurable set D, let Z̃u = Z̃1
uIu<t + Z̃1

t {Z̃1
t,uID +

Z̃2
t,uIDc}Iu≥t, then α̃t(Z̃t,T ) = α̃t(Z̃

1
t,T )ID + α̃t(Z̃

2
t,T )IDc ;

(iv’) lim
hց0

α̃t(Z̃t,t+h) = 0, for any Z̃ ∈ Z and t ∈ [0, T ).

We have the following lemma

Lemma 4.2. For any Z̃i ∈ Z , i = 1, 2 and λ ∈ [0, 1], we have

α̃s

(
λZ̃1

s,t + (1 − λ)Z̃2
s,t

)
≤ λα̃s(Z̃

1
s,t) + (1 − λ)α̃s(Z̃

2
s,t), a.s.
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Proof. For any Z̃i ∈ Z , i = 1, 2, there exist a P̃-measurable function li(u, y) and a continuous
local martingale Li with Li

0 = 0 and 〈Li, M̃ 〉 = 0 such that

Z̃i
t = Zi

0E
{
−
∫ ·

0
(̃li)udM̃u +

∫ ·

0

∫

R

li(u, y)Ñ (du, dy) + Li
}

t
.

For any λ ∈ [0, 1] and s < t, one easily derives that Z̃s,t := λZ̃1
s,t + (1 − λ)Z̃2

s,t satisfies the
following equality

Z̃s,t = 1 −
∫ t

s

Z̃s,u−

{ λZ̃1
s,u−

λZ̃1
s,u− + (1 − λ)Z̃2

s,u−

(̃l1)u +
(1 − λ)Z̃2

s,u−

λZ̃1
s,u− + (1 − λ)Z̃2

s,u−

(̃l2)u
}
dM̃u

+

∫ t

s

Z̃s,u−

λZ̃1
s,u−

λZ̃1
s,u− + (1 − λ)Z̃2

s,u−

dL1
u +

∫ t

s

Z̃s,u−

(1 − λ)Z̃2
s,u−

λZ̃1
s,u− + (1 − λ)Z̃2

s,u−

dL2
u

+

∫ t

s

∫

R

Z̃s,u−

{ λZ̃1
s,u−

λZ1
s,u− + (1 − λ)Z̃2

s,u−

l1(u, y) +
(1 − λ)Z̃2

s,u−

λZ̃1
s,u− + (1 − λ)Z̃2

s,u−

l2(u, y)
}
Ñ(du, dy).

Thus

α̃s(λZ̃
1
s,t + (1 − λ)Z̃2

s,t)

= EQ0

(∫
]s,t](λZ̃

1
s,u− + (1 − λ)Z̃2

s,u−)ξu

{
λZ̃1

s,u−(̃l1)u

λZ̃1

s,u−+(1−λ)Z̃2

s,u−

+
(1−λ)Z̃2

s,u− (̃l2)u

λZ̃1

s,u−+(1−λ)Z̃2

s,u−

}2

dAu

+
∫ t

s
(λZ̃1

s,u− + (1 − λ)Z̃2
s,u−)ηud

〈 λZ̃1

s,−

λZ̃1

s,−+(1−λ)Z̃2

s,−

· L1 +
(1−λ)Z̃2

s,−

λZ̃1

s,−+(1−λ)Z̃2

s,−

· L2
〉
u

∣∣Fs

)

≤ EQ0

(∫
]s,t] ξu

[
λZ̃1

s,u−(̃l1)
2

u + (1 − λ)Z̃1
s,u−(̃l2)

2

u

]
dAu

+
∫
]s,t] ηuλZ̃

1
s,u−d〈L1〉u +

∫
]s,t] ηu(1 − λ)Z̃2

s,u−d〈L2〉u
∣∣Fs

)

= λα̃s(Z̃
1
s,t) + (1 − λ)α̃s(Z̃

2
s,t).

Theorem 4.3. For Z̃ ∈ Z , let α̃s(Z̃s,t) be defined by (4.1), then C̃ =
{
C̃(B) = (C̃t(B))t∈[0,T ], B ∈

L∞(FT )
}

defined by

C̃t(B) = ess sup
Z̃∈Z

{
EQ0

[
Z̃t,TB

∣∣Ft

]
− α̃t(Z̃t,T )

}
(4.5)

is an S-related dynamic convex valuation.

Proof. Similar to Remark 3.9. 4) of Theorem 3.8, one can show that for any B ∈ L∞(Ft) and
s < t,

C̃s(B) = ess sup
Z̃∈Z

{
EQ0

[
Z̃s,tB

∣∣Fs

]
− α̃s(Z̃s,t)

}
.

Furthermore, from an argument as in the proof of Theorem 3.8, C̃t(B) satisfies the Ft-regularity,
( i.e., for any Ft-measurable set D and Bi ∈ L∞(FT ), i = 1, 2, C̃t(B1ID+B2IDc) = C̃t(B1)ID+
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C̃t(B2)IDc , a.s.) and the S-related property. As for the time-consistency of C̃, for any s < t
and B ∈ L∞(FT )

C̃s(C̃t(B)) = ess sup
Z̃∈Z

{
EQ0

[
Z̃s,tC̃t(B)

∣∣Fs

]
− α̃s(Z̃s,t)

}

≥ ess sup
Z̃∈Z

{
EQ0

[
Z̃s,tZ̃t,TB

∣∣Fs

]
− EQ0

[
Z̃s,tα̃t(Z̃t,T )

∣∣Fs

]
− α̃s(Z̃s,t)

}

= ess sup
Z∈Z

{
E
[
Zs,TB

∣∣Fs

]
− αs(Zs,T )

}

= Cs(B).

(4.6)

On the other hand,
{
EQ0 [Z̃t,TB|Ft] − α̃t(Z̃t,T ); Z ∈ Z

}
is closed under ∨, thus there exists a

sequence (Z̃n)n∈N ⊂ Z such that

C̃t(B) =ր lim
n→∞

EQ0

[
Z̃n

t,TB
∣∣Ft

]
− α̃t(Z̃

n
t,T ) ,

thus for any Z̃ ∈ Z , let Z̃∗,n
u = Z̃uIu<t + Z̃tZ̃

n
t,uIu≥t, then

EQ0

[
Z̃s,tC̃t(B)

∣∣Fs

]
− α̃s(Z̃s,t)

=ր limn→∞EQ0

[
Z̃s,t

{
EQ0(Z̃n

t,TB|Ft) − α̃t(Z̃
n
t,T )
}∣∣Fs

]
− α̃s(Z̃s,t)

=ր limn→∞EQ0[Z̃s,tZ̃
n
t,TB

∣∣Ft] − EQ0

[
Z̃s,tα̃t(Z̃

n
t,T )
∣∣Fs

]
− α̃s(Z̃s,t)

=ր limn→∞EQ0[Z̃∗,n
s,TB

∣∣Ft] − α̃s(Z̃
∗,n
s,T )

≤ ess supZ̃∈Z
{EQ0 [Z̃s,TB

∣∣Ft] − α̃s(Z̃s,T )}
= C̃s(B) .

Therefore
C̃s(C̃t(B)) = ess sup

Z̃∈Z

{
EQ0

[
Z̃s,tC̃t(B)|Fs

]
− α̃s(Z̃s,t)

}
≤ C̃s(B). (4.7)

From (4.6) and (4.7), we have
C̃s(C̃t(B)) = C̃s(B)

and the time consistency follows.

Similar to Lemma 3.10, we have the following lemma

Lemma 4.4. For any B ∈ L∞(FT ), let C̃(B) be the dynamic convex valuation (DCV) related
to S defined by (4.5), then

1)
{
Z̃t

(
C̃t(B) + α̃t(Z̃t,T )

)
; t ∈ [0, T ]

}
is an RCLL supermartingale under Q0 for any Z̃ ∈ Z ;

2) if there exists Z∗ ∈ Z such that Z∗
t

(
C̃t(B)+α̃t(Z

∗
t,T )
)

is a uniformly integrable martingale

under Q0, then for every t ∈ [0, T ]

C̃t(B) = EQ0

[
Z∗

t,TB
∣∣Ft

]
− α̃t(Z

∗
t,T ), a.s.
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To obtain the dynamics of C̃(B), for any Z̃t = Z0E
{
−
∫ ·

0
l̃udM̃u+

∫ ·

0

∫

R

l(u, y)Ñ (du, dy)+L
}

t
,

we introduce

Λt(Z̃) :=

∫

]0,t]
Z̃u−ξu(l̃u)2dAu +

∫

]0,t]
Z̃u−ηud〈L〉u .

Λ(Z̃) is a continuous increasing process and the following equality holds

α̃s(Z̃s,t) =
1

Z̃s

EQ0

[
Λt(Z̃) − Λs(Z̃)

∣∣Fs

]
, a.s.. (4.8)

Thus we have the following corollary

Corollary 4.5. For any B ∈ L∞(FT ), let C̃(B) be the S-related DCV related to S defined by
(3.9), then

1′)
{
Z̃tC̃t(B) − Λt(Z̃); t ∈ [0, T ]

}
is an RCLL supermartingale under Q0 for any Z̃ ∈ Z ;

2′) if there exists Z∗ ∈ Z such that Z∗
t C̃t(B) − Λt(Z

∗) is a uniformly integrable martingale
under Q0, then for every t ∈ [0, T ]

C̃t(B) = EQ0

[
Z∗

t,TB
∣∣Ft

]
− α̃t(Z

∗
t,T ), a.s.

Proof. From (4.8), one easily derives

Z̃tC̃t(B) − Λt(Z̃) = Z̃t

(
C̃t(B) + α̃t(Z̃t,T )

)
−EQ0 [ΛT (Z̃)

∣∣Ft].

Since {EQ0 [ΛT (Z̃)
∣∣Ft]} is a uniformly integrable martingale under Q0, 1′) and 2′) follow from

Lemma 4.4.

For a given B ∈ L∞(FT ), we consider the following backward semimartingale equation (BSE)





Yt = Y0 −
∫ t

0

ξu
2

(ϕ̃u)2dAu −
∫ t

0

1

4ηu
d〈L̃〉u +

∫ t

0
θ(u)dM̃u + L̃t

+

∫ t

0

∫

R

σ2(u, y)

σ1(u)

{
θ(u) +

√
2ξuϕ̃u

}
Ñ(du, dy), t < T ;

YT = B .

(4.9)

The solution of the BSE (4.9) is a 4-tuple (Y, θ, ϕ, L̃) satisfying (4.9) such that

(1) θ is a predictable process such that θ · M̃ is a BMO-martingale under Q0. ϕ is a

P̃-measurable function with ϕ(u, y) > −1 and ϕ̃u =
∫

R

σ2(u,y)
σ1(u) ϕ(u, y)K(u; dy). Also

∫ t

0

∫
R
ϕ(u, y)Ñ (du, dy) is a BMO-martingale under Q0 with

∫ T

0

∫
R
ϕ(u, y)2K(u; dy)dAu ≤

c <∞, Q0-a.s. for some c ∈ R;

(2) L̃ is a BMO martingale under Q0( i.e., L̃ ∈ BMO(Q0) ) with
〈
L̃
〉
T
≤ c < ∞, Q0-a.s.,

which is strongly orthogonal to M̃ under Q0;
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(3) Y is a bounded RCLL semimartingale.

Remark 4.6.

1. If S is a continuous semimartingale, i.e., σ2(u, y) = 0, the BSE equation (4.9) is the same as
(4.5) of Mania and Schweizer(2005)[24].

2. In general, the BSE (4.9) might not have a solution. However, in many cases, the BSE (4.9)

has a solution. Especially, when B = x+

∫ T

0
πudSu for some π ∈ Adm,





θ(u) = σ1(u)πu ,
ϕ(u, y) = 0 ,

L̃t = 0 ,

Yt = x+

∫ t

0
πudSu

is the solution of the BSE (4.9).

3. If BSE (4.9) has a solution given by (Y, θ, ϕ, L̃), one can see that there exists a constant still
denoted by c such that

∫ T

0
ξu(ϕ̃u)2dAu +

∫ T

0
ηud〈L̃〉u ≤ c <∞, Q0-a.s., (4.10)

since ξ and η are two bounded positive processes.

Theorem 4.7. If the BSE (4.9) has a solution denoted by (Y, θ, ϕ, L̃), then for all t ∈ [0, T ]

C̃t(B) = Yt, Q0-a.s.

Proof. For any Z̃ ∈ Z , there exist a continuous local Q0-martingale L with L0 = 0 and
〈L, M̃ 〉 = 0, and a functional l ∈ P̃ such that

Z̃t = 1 −
∫ t

0
Z̃u− l̃udM̃u +

∫ t

0

∫

R

Z̃u−l(u, y)Ñ (du, dy) +

∫ t

0
Z̃u−dLu .
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If BSE (4.9) has a solution (Y, θ, ϕ, L̃), from Itô’s formula we find that

YtZ̃t − Λt(Z̃) = Y0Z0 −
∫ t

0
Yu−Z̃u− l̃udM̃u +

∫ t

0

∫

R

Yu−Z̃u−l(u, y)Ñ (du, dy) +

∫ t

0
Yu−Z̃u−dLu

−
∫ t

0
Z̃u−

ξu
2

(ϕ̃u)2dAu −
∫ t

0
Z̃u−

1

4ηu
d〈L̃〉u +

∫ t

0
Z̃u−θ(u)dM̃u +

∫ t

0
Z̃u−dL̃u

+

∫ t

0

∫

R

Z̃u−
σ2(u, y)

σ1(u)

{
θ(u) +

√
2ξuϕ̃u

}
Ñ(du, dy)

−
∫ t

0
Z̃u− l̃uθ(u)dAu +

∫ t

0
Z̃u−d〈L̃, L〉u

+

∫ t

0

∫

R

Z̃u−l(u, y)
σ2(u, y)

σ1(u)

{
θ(u) +

√
2ξuϕ̃u

}
µ(du, dy)

−
∫ t

0
Z̃u−ξu(l̃u)2dAu −

∫ t

0
Z̃u−ηud〈L〉u

= Y0Z0 +

∫ t

0
Z̃u−

{
θ(u) − Yu− l̃u

}
dM̃u

+

∫ t

0

∫

R

Z̃u−

{
Yu−l(u, y) +

σ2(u, y)

σ1(u)

{
1 + l(u, y)

}{
θ(u) +

√
2ξuϕ̃u

}}
Ñ(du, dy)

+

∫ t

0
Yu−Z̃u−dLu +

∫ t

0
Z̃u−dL̃u

−
∫ t

0
Z̃u−

ξu
2

{
(ϕ̃u)2 − 2

√
2ϕ̃u l̃u + 2(l̃u)2

}
dAu

−
∫ t

0
Z̃u−

1

4ηu
d〈L̃〉u +

∫ t

0
Z̃u−d〈L̃, L〉u −

∫ t

0
Z̃u−ηud〈L〉u .

As ξ and η are positive, bounded and predictable processes, {YtZ̃t −Λt(Z̃); t ∈ [0, T ]} is a local
Q0-supermartingale. Furthermore, as Y is a bounded process, Z̃ is a uniformly integrable Q0-
martingale and Λt(Z̃) ≤ ΛT (Z̃) and EQ0 [ΛT (Z̃)] = α̃0,T (Z̃) < ∞ for Z̃ ∈ Z , so one sees that

{YtZ̃t −Λt(Z̃); t ∈ [0, T ]} is uniformly integrable under Q0. Hence, {YtZ̃t −Λt(Z̃); t ∈ [0, T ]} is
a true Q0-supermartingale for any Z̃ ∈ Z . Therefore, for any Z̃ ∈ Z

YtZ̃t − Λt(Z̃) ≥ EQ0

[
BZ̃T − ΛT (Z̃)

∣∣Ft

]
,

thus
Yt ≥ EQ0

[
Z̃t,TB

∣∣Ft

]
− α̃t(Z̃t,T )

and hence
Yt ≥ ess sup

Z̃∈Z

{
EQ0

[
Z̃t,TB

∣∣Ft

]
− α̃t(Z̃t,T )

}
= C̃t(B), a.s.

Furthermore, if we let

Z∗
t := E

{
−
∫ ·

0

1√
2
ϕ̃udM̃u +

∫ ·

0

∫

R

1√
2
ϕ(u, y)Ñ (du, dy) +

∫ ·

0

1

2ηu
dL̃u

}
t
,

it follows from (4.13) that

α̃0(Z̃0,T ) = EQ0

( ∫ T

0 Z̃0,u−ξu(l̃u)2dAu +
∫ T

0 Z̃0,u−ηud〈L〉u
)

= EQ0

[
Z̃0,T

{ ∫ T

0 ξu(l̃u)2dAu +
∫ T

0 ηud〈L〉u
}]

≤ c <∞,
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for some constant c > 0, thus Z∗ ∈ Z and {YtZ
∗
t −Λt(Z̃

∗); t ∈ [0, T ]} is a uniformly integrable
Q0-martingale. Thus

YtZ
∗
t − Λt(Z

∗) = EQ0

[
Z∗

TB − ΛT (Z∗)
∣∣Ft

]
,

which implies
Yt = EQ0

[
Z∗

t,TB
∣∣Ft

]
− α̃t(Z

∗
t,T )

≤ ess supZ̃∈Z

{
EQ0

[
Z̃t,TB

∣∣Ft

]
− α̃t(Z̃t,T )

}

= C̃t(B).

So finally we get the desired result
C̃t(B) = Yt a.s.

for all t ∈ [0, T ], which completes the proof.

4.2 The S-related DCV generated by α̂

We now consider the S-related dynamic convex valuation generated by α̂. Let

Ẑ :=
{
Z̃ ∈ Z̃e; α̂0(Z̃0,T ) <∞

}
.

By similar arguments as in the preceding case, one can show that for each Z̃ ∈ Ẑ and for any
s < t

(i”) ess inf
Z̃∈Ẑ

{
α̂s(Z̃s,t)

}
= 0;

(ii”) α̂s(Z̃s,T ) = α̂s(Z̃s,t) + EQ0[Z̃s,tα̂t(Z̃t,T )
∣∣Fs], Q

0-a.s.;

(iii”) for any Z̃i ∈ Ẑ , i = 1, 2 and a Ft-measurable set D, let Z̃u = Z̃1
uIu<t + Z̃1

t {Z̃1
t,uID +

Z̃2
t,uIDc}Iu≥t, then α̂t(Z̃t,T ) = α̂t(Z̃

1
t,T )ID + α̂t(Z̃

2
t,T )IDc ;

(iv”) lim
hց0

α̂t(Z̃t,t+h) = 0, Q0-a.s.

Also for any Z̃i ∈ Ẑ , i = 1, 2 and λ ∈ [0, 1],

α̂s

(
λZ̃1

s,t + (1 − λ)Z̃2
s,t

)
≤ λα̂s(Z̃

1
s,t) + (1 − λ)α̂s(Z̃

2
s,t), Q0-a.s.

Adapting the proof of Theorem 4.3, one directly derives

Theorem 4.8. For Z̃ ∈ Ẑ , let α̂s(Z̃s,t) be defined by (4.2), then Ĉ =
{
Ĉ(B) = (Ĉt(B))t∈[0,T ], B ∈

L∞(FT )
}

defined by

Ĉt(B) = ess sup
Z̃∈Ẑ

{
EQ0

[
Z̃t,TB

∣∣Ft

]
− α̂t(Z̃t,T )

}
(4.11)

is an S-related dynamic convex valuation (DCV).
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For any Z̃t = Z0E
{
−
∫ ·
0 l̃udM̃u +

∫ ·
0

∫
R
l(u, y)Ñ (du, dy) + L

}
t
∈ Ẑ , we introduce

Λ̂t(Z̃) :=

∫ t

0

∫

R

Z̃u−ξ(u, y)l(u, y)
2K(u; dy)dAu +

∫

]0,t]
Z̃u−ηud〈L〉u .

Similar to Corollary 4.5, we have the following dynamic principle

Corollary 4.9. For any B ∈ L∞(FT ), let Ĉ(B) be the S-related dynamic convex valuation
defined by (4.11), then

1′′)
{
Z̃tĈt(B) − Λ̂t(Z̃); t ∈ [0, T ]

}
is a RCLL supermartingale under Q0 for any Z̃ ∈ Ẑ ;

2′′) if there exists Z∗ ∈ Ẑ such that Z∗
t Ĉt(B) − Λ̂t(Z

∗) is a uniformly integrable martingale
under Q0, then for every t ∈ [0, T ]

Ĉt(B) = EQ0

[
Z∗

t,TB
∣∣Ft

]
− α̂t(Z

∗
t,T ), a.s.

We consider the following backward semimartingale equation





Ŷt = Ŷ0 −
∫ t

0

∫

R

ξ(u, y)ϕ(u, y)2K(u; dy)dAu −
∫ t

0

1

4ηu
d
〈
L̂
〉
u

+

∫ t

0
θ(u)dM̃u +

∫ t

0

∫

R

{
σ2(u, y)

σ(u)
θ(u) + 2ξ(u, y)ϕ(u, y)

}
Ñ(du, dy) + L̂t ,

ŶT = B

(4.12)

The solution of the BSE (4.12) is a 4-tuple (Ŷ , θ, ϕ, L̂) satisfying (4.9) such that

(1) θ is a predictable process such that θ · M̃ is a BMO-martingale under Q0. ϕ is a P̃-
measurable function with ϕ(u, y) > −1 such that

∫ t

0

∫
R
ϕ(u, y)Ñ (du, dy) is a BMO under

Q0 with
∫ T

0

∫
R
ϕ(u, y)2K(u; dy)dAu ≤ c <∞, Q0-a.s. for some c ∈ R;

(2) L̂ is a BMO martingale under Q0( i.e., L̂ ∈ BMO(Q0) ) with
〈
L̂
〉
T
≤ c < ∞, Q0-a.s.,

which is strongly orthogonal to M̃ under Q0;

(3) Y is a bounded RCLL semimartingale.

Remark 4.10.

1. Even if S is a continuous semimartingale, i.e., σ2(u, y) = 0, the BSE equation (4.12) is quite
different from (4.5) or (4.9) of Mania and Schweizer(2005)[24], therefore the S-related DCV
generated by α̂ is totally different from the ’dynamic exponential utility indifference valuation’
(see [24]). We think that the wealth related valuation is more realistic than the one related to a
utility function and the more or less artificial corresponding indifference price.
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2. In general, the BSE (4.12) may not have a solution. However, in many cases, the BSE (4.12)

has a solution. Especially, when B = x+

∫ T

0
πudSu for some π ∈ Adm,





θ(u) = σ1(u)πu ,
ϕ(u, y) = 0 ,

L̃t = 0 ,

Ŷt = x+

∫ t

0
πudSu

is also the solution of the BSE (4.12).

3. If the BSE (4.12) has a solution given by (Ŷ , θ, ϕ, L̂), one can see that there exists a constant
still denoted by c such that

∫ T

0

∫

R

ξ(u, y)ϕ(u, y)2K(u; dy)dAu +

∫ T

0
ηud〈L̃〉u ≤ c <∞, Q0-a.s., (4.13)

since ξ and η are two bounded positive process.

Theorem 4.11. If the BSE (4.9) has a solution denoted by (Ŷ , θ, ϕ, L̂), then for all t ∈ [0, T ]

Ĉt(B) = Ŷt, Q0-a.s.
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Proof. Recall that l̃u =

∫

R

σ2(u, y)

σ1(u)
l(u, y)K(u; dy), so it follows from Itô’s formula that

YtZ̃t − Λ̂t(Z̃) = Y0Z0 +

∫ t

0
Z̃u−

{
θ(u) − Yu− l̃u

}
dM̃u

+

∫ t

0

∫

R

Z̃u−

{
Yu−l(u, y) +

{
σ2(u, y)

σ(u)
θ(u) + 2ξ(u, y)ϕ(u, y)

}{
1 + l(u, y)

}}
Ñ(du, dy)

+

∫ t

0
Yu−Z̃u−dLu +

∫ t

0
Z̃u−dL̂u

−
∫ t

0

∫

R

Z̃u−ξ(u, y)ϕ(u, y)2K(u; dy)dAu −
∫ t

0
Z̃u− l̃uθ(u)dAu

+

∫ t

0

∫

R

Z̃u−

{
σ2(u, y)

σ(u)
θ(u) + 2ξ(u, y)ϕ(u, y)

}
l(u, y)K̃(u; dy)dAu

−
∫ t

0

∫

R

Z̃u−ξ(u, y)l(u, y)
2K(u; dy)dAu

−
∫ t

0
Z̃u−

1

4ηu
d
〈
L̂
〉
u

+

∫ t

0
Z̃u−d

〈
L, L̂

〉
u
−
∫

]0,t]
Z̃u−ηud〈L〉u

= Y0Z0 +

∫ t

0
Z̃u−

{
θ1(u) − Yu−l̃u

}
dM̃u

+

∫ t

0

∫

R

Z̃u−

{
Yu−l(u, y) +

{
σ2(u, y)

σ(u)
θ(u) + 2ξ(u, y)ϕ(u, y)

}{
1 + l(u, y)

}}
Ñ(du, dy)

+

∫ t

0
Yu−Z̃u−dLu +

∫ t

0
Z̃u−dL̂u

−
∫ t

0

∫

R

Z̃u−ξ(u, y)
{
l(u, y) − ϕ(u, y)

}2
K(u; dy)dAu

−
∫ t

0
Z̃u−

1

4ηu
d
〈
L̂
〉
u

+

∫ t

0
Z̃u−d

〈
L, L̂

〉
u
−
∫

]0,t]
Z̃u−ηud〈L〉u .

The rest is the same as the proof of Theorem 4.7.

In the above results we present a to our knowledge new valuation which relates the value
of general claims directly to accessible wealths. In this way we avoid to use controversially
discussed pricing rules like e.g. utility indifference. This new valuation has all desirable prop-
erties and even holds in the general jump market given above. Accessibility of this valuation is
guaranteed by the representation as BSE. It would be interesting to put different valuations to
a benchmark test. This however goes far beyond the aim of this research and far beyond our
numerical capabilities.
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