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Abstract. We consider an incomplete market with general jumps in the given price process S of
a risky asset. We define the S-related dynamic conver valuation (S-related DCV) which is time-
consistent. We discuss the representation for a given S-related DCV C' in terms of a ’penalty
functional’ o and give some characteristics of «, which are the sufficient conditions for a given
C to be an S-related DCV. Finally, we give two special forms of « satisfying those conditions
to describe the dynamics of the corresponding S-related DCV by a backward semimartingale
equation.
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1 Introduction

One of the important problems in mathematical finance is the valuation of contingent claims in
incomplete financial markets. Recently, many researchers have studied the utility indifference
valuation method, see Kloppel and Schweizer(?OO?)[lg], Mania and Schweizer (2005)[24], Rouge
and El Karoui (2000)[2%) and the references in there. In this paper, we continue our research
on valuations in Xiong and Kohlmann (2008)[27] where a special utility indifference approach is
described. In this paper we avoid the use of a utility function and propose a more direct model
for valuations.
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We consider a financial market similar to the one in Kohlmann and Xiong(2007)2%). In the
market, there is a risky asset whose discounted price process S = (S;t € [0,T7]) is a semimartin-
gale with bounded jumps. We assume that all the purely discontinuous local martingales are
driven by an integer-valued random measure u(w;du,dy) and the continuous martingale part
of S is driven a continuous local martingale M. Under some assumptions, the market is an
incomplete market and we consider the S-related dynamic convex valuation of a contingent
claim B.

Mania and Schweizer (2005)24 studied the dynamics of the exponential utility indifference
value process C(B;a) for a contingent claim B in a semimartingale model with a general
continuous filtration. One can show even in our jump model that for fixed ¢t € [0,7] the
exponential utility indifference valuation Cy(B; «) satisfies the desirable properties of a valuation

(A) Monotonicity: Cy(By;a) < Cy(Ba;«a) for all By, By € L™ (%) with By < Bo;

(B) Z-convexity: Cy(AB;+(1—\)Bs;a) < ACy(By;a)+(1—\)Cy(Bay; ) forall A € LY(%F)
with values in [0,1] and By, By € L (%) ;

(C) Z-translation invariance: Ci(B + a;;a) = Cy(B;a) + a; for all B € L>®(%#r) and
a; € Loo(tg;t%

(D) Z-regularity: Cy(Bilg + Bolgc;a) = Ci(Bi;a)ly + Ci(Bo;a)lye for all By, By €
L>(Zr) and A € Fy;

(E) Time consistency: for all By, By € L>®(%7) and all s € [0, (]

Cy(B1;a) = Cy(Bg; )  implies that  Cy(By; ) = Cs(Ba; ) .

Such properties are also found in the concept of coherent measures of risk (see Artzner et
al.(1999)") or Delbaen(2002)1®)), in the concept of convex measures of risk ( see Féllmer and
Schied(2002)"?!), and in the concept of dynamic monetary concave utility functionals (DMCUF,
see Kloppel and Schweizer(2007)!1]). Here -for the first time, to the best of our knowledge- we
consider another interesting property

(F) S-related property: for all 7 € Adm and x € L*™(.%),
CyXT™) = X", as,

where X*™ =z + [ 1,dS, is the corresponding wealth process related to (z, ),

and a valuation C' = {C(B) = (Ci(B))e[o,r); B € L™(Fr)} satisfying (A)~(F) will be called
the S-related dynamic convex valuation (S-related DCV). In this way, we incorporate into the
valuation the fact that the value at time ¢t < T of an attainable wealth at time 7" should be the
wealth itself at time ¢. Similar to Theorem 3.13 of Kléppel and Schweizer(?OO?)“g], we obtain
a representation for the S-related DCV as the following
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Theorem 1.1. If C = {C(B) = (Ci(B))sejo,1), B € L>=(Fr)} is a dynamic conver valuation
related to S, which is continuous from above at time t, then there exists a ”penalty functional”
a such that for all B € L>(%r)

Cy(B) = esZs sZup {E [Zt,TBL?}] —a(Zer)}
Elie

where Z. is the family of the density processes of all equivalent martingale measure. Here, for
each Z € L, Zy1 = % and

Oét(Zth) = BeSLS Stlg]zj) ) {E [Zt,TBLgt] — Ct(B)}
eLee(Fr

is the convex conjugate of Cy.

Different from Kloppel and Schweizer(QOO?)[lg], we here consider the family of the density
processes of all equivalent martingale measures Z. in order to be able to treat the additionally
introduced S-related property. Furthermore, we discuss the property of o and try to give
sufficient conditions for a given « to be the penalty functional of an S-related DCV. Then
we give two special versions of « satisfying those conditions. This then allows to describe the
dynamics of the corresponding S-related DCV by a backward semimartingale equation.

The paper is structured as follows. An incomplete market model with general jumps is
established in section 2. We give the form of the density process of the equivalent martingale
measure and give the definition of the S-related DCV. In section 3, we state a representation
theorem for the S-related DCV by a 'penalty functional’ «, and then we discuss some properties
of a which are the sufficient for a to be the penalty functional of a S-related DCV. In section
4, we give two versions of « satisfying the conditions derived in section 3 and describe the
dynamics of the corresponding S-related DCV by a backward semimartingale equation.

2 The preliminaries

In this paper, we consider the dynamic convex valuation in a market similar to the one in
Kohlmann and Xiong(2007)?°), We begin with a finite time horizon 7' > 0 and a complete
probability space (2, #,P). Let F = {%#,0 < t < T} be a filtration satisfying the usual
conditions with % = %#. We assume that there exists a risky asset in the market, whose
discounted price S = (S¢)o<t<7 is described by a special semimmartingale with bounded jumps.
To describe the dynamics of S, we need the following notations:

o A = (A)y<;<p is an F-adapted continuous increasing process with Ag = 0 and EA7 < oo;
o M = (M;)y<;<p is a continuous local martingale with (M, M), = Ay;

o 1= {u(w;dt,dx) : w € Q} is an integer-valued random measure on Ry x R with compen-
sator v(w;dt,dr) = dAy(w)K (w,t;dr), where K (w,t;dz) is a kernel from (2 x Ry, &)
into (R, #). Let N(w;dt,dx) := p(w;dt,dr) — v(w;dt,dx).

Throughout the paper, we assume that all the jump martingales in the market are driven by
the random measure p, and that the following representation holds:
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Assumption 2.1. Any purely discontinuous local (P,TF)-martingale m can be represented in
the following form

t ~
my :m0+/ /@b(s,x)N(ds,dm).
0 JR
Remark 2.2.

. Note that here we do not assume any representation property with respect to the continuous
local martingale. Also the market model discussed in this paper is more general than the market
considered in Kohlmann and Xiong (2007,a)?".

. As A is a continuous process, a;(w) = v(w, {t} xR) = 0. Thus for all P = PR B-measurable
functions W(w,t,z), let

Wt(w) - /RW(LU,t,(L‘)I/(w; {t} x dx) if /R\W(w,t,x)]y(w; {t} x dz) < oo
+o00

otherwise

then W = 0. Thus Assumption 2.1 implies that the filtration F is quasi-left continuous.

. It is easy to see that there exists an F-optional process B = (B;)o<i<T and a sequence of stopping

times (7,) such that for all positive &2-mesurable function W(w,t,z),

t
Wk g = / / W(w,u, z)p(w; du, dx) = ZW(']A—n,/Bi—n)I{{-nSt}. O
0 JR
(n)

We now describe the market model. We assume that the dynamics of the discounted price
process S are given by

t t t _
dS; = Sy +/ YudAy +/ o1(u)dM,, + / / o9(u,y)N (du, dy),
0 0 0 JR

T
where 7 and o7 are two predictable processes with / o1(s)2dA, < 0o as. and oy(t,y) is a
0

bounded ﬁmeasurable function. We assume that there exist two constants £ and K such that

T
/ v2dA, < K < oo and oy(s) > k > 0. (2.1)
0
Just as in Kohlmann and Xiong(2007,a) 201 et 6, = % to introduce a new measure Q° by
01
dQ" _ 50
dP Etf‘ )

T T
1 K
where 7 = éa(—/%dMu)t. From / 62dA, < —/ Y2dA, < 7z <0 79 is a continuous
0 0

uniformly integrable martingale so that Z°S is a local martingale. Thus Q° is an equivalent



2 THE PRELIMINARIES 5

t
martingale measure. If we let M; := M; + / 0ydA,, it is easy to see that M is a continuous
0

local @°-martingale. Hence, under QV, the discounted price process S can be rewritten as

t N t ~
St =5 +/ o1(u)dM, +/ / oa(u,y)N (du, dy).
0 0 JR

Remark 2.3. (1) It follows from Proposition 2.3 of Kohlmann and Xiong (2007)? that Q°
satisfies the reverse Hélder inequality Rproar(P), i.e., there exists a constant C' such that for
any stopping time T
E{Z)plog Z2p|F:} < C < o0, (2.2)
0
where ZQT = %. Furthermore, for any B € L*°(.%r), we can define a measure Pg as in [9]:
dPpg B

AP 7T Bl
So the density process of Q° with respect to Pg is given by

a4

B, o
@ E{eaBLg't} ’

Z" = Ep, {Z% — 3@} = E(e*P)

(&

and since e*B is bounded, one sees that Q° satisfies the reverse Hélder inequality Rrrocr(Pg),
1.€.,
Ep, {20108 207 |7} <C <0, as

0,B
holds for some constant C' and all stopping time T, where Zg’f = gg,B.

(2) Note that the minimal entropy martingale measure, denoted by QF, exists and is equiva-
lent to P according to Frittelli(2000)%. O

Let
7 — { Z' Z is a nonnegative uniformly integrable martingale with }

RCLL paths such that ZS is a local martingale

For any Z € Z, let 7 = inf{t : Z; = 0}. From He, Wang and Yan(1992) 7 is a stopping time so
that for all w € {T < o0}
Zi(w) =0, t>71(w),

and for all w € {7 > 0} and ¢t < 7(w),
Zi(w) #0 and Z;_(w) #0.

Let Ze = {Z € Z;Zy > 0,a.s., forallt € [0,T]}, since Z° € Z., we have that Z. # 0.

. 7 -
For all Z € Z, define Z; 7 := % We also introduce Z; = Z—é = Ego (%L%g) and Z, =
t T

{Z = %; Z € Ze}. With these notations we can state the following lemma
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Lemma 2.4. For any Z € Z., there exists a P -measurable function l(u,y) with [(u,y) > 1
and a continuous local martingale L strongly orthogonal to M with Ly = 0 such that

Ztzzog{—/O'{5u+iu}dMu+/0'/RZ(u,y)N(du,dy)+L}t

T o2(u, y) u u:
where 1y, '_/Riﬂl(u) H(u, y) K (u; dy).

Proof. Since Z € Z., Z can be represented as
t
Zt = ZO =+ / Zu_dmu
0

where m is a local martingale with mg = 0. Since M is a continuous local martingale, there
exists a predictable process ¢ and a continuous local martingale L such that m¢, the continuous
martingale part of m, can be represented as

t
my = / CudMy, + Ly,
0

Furthermore, by Assumption 2.1, m?, the jump martingale part of m, can be written as

md = [ [ )N,

thus Z is the solution of the following stochastic differential equation

t t t
Zy = Zo + / ZuCudM, + / / Zo_l(u,y)N(du, dy) + / Zy—dLy .
0 0 JR 0

By making use of It6’s formula, we derive
Sy =2ZpSo+Z_ S+ S_-Zy+[Z,5];
t ~
= ZOSO + / Zu—{’)/u + Jl(u)Cu + Jl(u)lu}dAu
0

t t
+/ Zu_{al(u)—l—Su_Cu}dMu—i—/ ZuSu_dLy,
0

0
t ~
+/ / Zu{ag(u,y) + Su_l(u,y) + Ug(u,y)l(u,y)}N(du,dy) .
0o JrR
Since ZS is a local martingale by the definition of Z., we finally get
Cu = —0y — L, dA, x dP -a.s.,

thus Z, = Zo€{ — [;{6u + Lu}dM, + [, [ l(u,y)N(du,dy) + L},. O
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Corollary 2.5. For any Z € Z., there ezists a P -measurable function l(u,y) with l(u,y) > 1

and a continuous local Q°-martingale L strongly QV-orthogonal to M (i.e., LM is a continuous
local Q°-martingale ) with Lo = 0 such that

Zt:ZOL€{—/ iudﬂu—i—/ /l(u,y)N(du,dyHL}t
0 0 JR

= [ oa(u,y) u "
where 1, '_/Riﬁl(u) H(u, y) K (u; dy).

We consider the following family of the admissible strategies

Adm = {7r

= (Wu)ue[oﬂ is a S-integrable predictable process
such that sup,cp 1) |féf mudSy| € L>®(Fr) ’

t
and for 71 € Adm and z € L>®(%), let X;"" = x —|—/ m,dS, be the corresponding wealth

0
process. We now can give the definition of the dynamic convex valuation related to the price
process S:

Definition. An S-related dynamic convex valuation (S-related DCV) is defined to
be the family

{cB) ={CB)}qor: BeL®(Fn)}
such that
(1) for given B € L*(Fr), C(B) := {Cy(B)}4c(o,r is @ bounded RCLL semimartingale;
(2) for every t € [0,T], C¢(B) satisfies the following properties:
(A) Monotonicity: Cy(By) < Cy(By) for all By, By € L*™°(%7) with By < Bs;

(B) F-convexity: Cy(AB1 + (1 —A)By) < ACy(By)+ (1 —\)Cy(Bs) for all A € L°(.%)
with values in [0,1] and By, Bs € L (%) ;

(C) Z-translation invariance: Cy(B + a;) = Cy(B) + a¢ for all B € L>®(%7) and
ay € Loo(yt)’

(D) Z-regularity: Cy(B1I1a+Bolac) = Cy(B1)Ia+Cy(B2)Iac forall By, By € L°( %)
and A € Fy;

(E) Time consistency: for all By, By € L>*(%7) and all s € [0, {]
Cy(B1) = C¢(B2) implies that Cy(B;) = Cs(Ba) ;
(F) S-related property: for all 7 € Adm and = € L*(.%),
Cy(X7™) = X", as,
where X*™ = x + [ 7,dS,, is the wealth process related to (z,7).
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Example. For a fixed positive constant & > 0 and B € L*°(.%r), introduce

1 g
Cy(B;a) == alog gzs;qiélnf; Ege (ea(B Xf»T)‘ft) ,

where thf J=X7" - X" = ftT 7,dS,. Tt easily follows from Mania and Schweizer(2005)24
that C'(B;«) is an S-related DCV.

3 The representation theorem

We now derive the representation theorem for the S-related DCV of a contingent claim. We
begin with the static case.

Definition. A mapping p: L*(%#r) — R is called a static S-related convex valuation
if it satisfies
(i) Monotonicity: p(B1) < p(B2) for all By, By € L*®(%r) with By < Bo;

(ii) Convexity: p(AB1+ (1 — A)Ba) < Ap(B1) + (1 — \)p(B2) for all constant A in [0, 1] and
Bl,BQ < Loo(yT) ;

(iii) Translation invariance: p(B + a) = p(B) + a for all B € L*>(.%r) and constant «;

(iv) S-related property: p(X%’r) =0 for all 7 € Adm.

As in [12], we let A, = {B € L>®(Zr)|p(B) < 0}, so that A, is a convex set.

Lemma 3.1. Assume that p : L°(F71) — R is a static S-related convex valuation and A,
is o(L°(QY), LY(Q"))-closed, then there exists a “penalty functional” & such that for every
B e L>(%7)

p(B) = ZEI%{E[ZO,TB] —a(Z)},

where & is the convexr conjugate of p, i.e.,

a(2)= swp {E[ZyrB]-p(B)} .
BeL>(Zr)

Proof. The idea is the same as in the proof of Theorem 5 of [12]. It is easy to see that

@(Z) = Sup {E [ZQyTB]} s
BeA,

and for any B € L>*(%r) and Z € Z,
E[ZorB] — 6(Z) < E[ZorB] = {E[Zo,rB] — p(B)} = p(B).
Thus we must show that for any m € R such that

m > sup{E[ZyrB] — &(Z)},
Z€EL
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we have m > p(B), i.e., B—m € A,. Suppose that, on the contrary, B —m ¢ A,. Since A, is
a o(L>®(Q%), L' (Q"))-closed convex set one can find a linear functional ¢ such that

B := sup ¢(B) <{(B—m)=:v<o0.
BeA,

We claim that

1. £ is a positive linear functional;

2. for any m € Adm, £(X37) = 0.

In fact, for any B € L*°(%r) with B > 0, one can see that for all A\ > 0, p(—AB) < p(0) = 0,
thus —AB € A, and
v > U(=AB) = —\(B),
it follows by taking A T oo that ¢(B) > 0. Further more, if there exists a 7* € Adm such that
UXP™) #0, let ¢ = W, then £(cX™ ) = =, which is a contradiction to cXp" € A,.
T
Therefore, there exists a ¢ € L'(Q°, %) with € > 0 such that

{(B) = Eqo|B¢]
holds for all B € L>(Zr). Since E[|Z3]] = Ego(£) < oo, let
Zt =F (Z%é.‘yt) 9

one gets that Zis a nonnegative uniformly integrable martingale which has an RCLL version,
still denoted by Z. Since S is a local bounded semimartingale, there exists a sequence of
stopping times (7,,) such that S™ is bounded for each n. For any stopping time 7 < T

~

T
E[Z:pr Srar,] = ElZ7Srpr,] = é(/ I[[O,T/\Tn}] (u)dS,) =0,
0

thus Z™S™ is a true martingale for each n and ZS is a local martingale under P. Thus Z € Z
and

. . 1 1
a(2) = swp {E|ZrB|} = = sw ¢(B) = -8,
BEA, Zy BeA, Z
thus ) )
(Z) < 2 (B —m) = = Eq,[B¢ —m = E[BZy1] —m,
Zo Zo
which is a contradiction to the choice of m. Thus B —m € A, and thus m > p(B). O

Definition. We call a dynamic convex valuation C' continuous from above at time ¢, if
for any uniformly bounded sequence (By,)nen C L*°(:Fr) decreasing to some B € L*®(.%r), we
have

n—oo
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By a similar argument as in Theorem 3.13 of Kléppel and Schweizer(2007)!"], we can state
the following theorem

Theorem 1.1. If C = {C(B) = (Cy(B))ejo,1]; B € L>®(Fr)} is a dynamic conver valuation
related to S, which is continuous from above at time t, there exists a “penalty functional” «
such that for all B € L (%)

Ct(B) = esZs Slep {E [ZnTBL?t] - Oét(Zth)} 5
e e

where Zy = ZZ—:: and

at(Zt,T) = BESLSOOSB;) ) {E [Zt7TB|L9Zt:| - Ct(B)}
T

is the convex conjugate of Cy.

Proof. For every Z € Z, and B € L>®(%r),

E|ZyrB|#] — ow(Zyr) = E [ZyrB|.F] — Beisof’ﬁé’ | {E [ZyrB|#] — Ci(B)}
< E[ZiyrB|#] — {E [ZirB|#] — C«(B)}
= Ct(B)7

thus

Cy(B) > ess sup {E[ZrB|#] — a(Zir)}
Clie

We only need to prove that for all B € L>(%r)

Eqo[Ci(B)] < Ego esZs sZup {E[ZyrB|#] — ar(Zer) }| - (3.1)

Let pi(B) = Ego[C(B)], then p;(B) is continuous from above and thus A} := {B;p;(B) < 0}
is o(L°°(Q, 1), LY(Q°, Zr))-closed. Therefore, p; can be represented into the following form

pi(B) = ZEE{E[ZO,TB] —&(2)},

where &, is given by

&(Z)= sup {E(ZorB)—pi(B)}.
BeL>(Zr)

For Z € 7. let
Zs =205t + ZP Z4 Ton,

and Z; = {Z;Z € Z,}. So Z; C Z, C Z and

p(B) = sup{E[ZorB] — &x(2)}.
VAV
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For any Z € 7Z with Z ¢ 7Z;, there exists an .%#;-measurable set A such that E(Zy+l4) #
E(ZP14). Thus for any constant A, p;(AM4) = Ego(Cr(A4)) = AE(ZP14) and

(Z) = ilé%{AE(Zo,TIA) = pe(AMa)}

= sup {N(E(Zo414) — BE(Z{14))} = <.
AER

Therefore,

pi(B) = sup {ElZurB] = &4(2). (3.2)

From the F-regularity of Cy, {E(Z;7B| %) — Ci(B); B € L>(Fr)} is closed by V, thus there
exists a sequence (B, )nen € L (Z7) such that

a(Zyr) = BesLs s(lg) ){E(Zt7TBn|<%«/) — Cy(Bp)}
eLee(Fr

=/ nhjgo E(Zt,TBnL%t) - Ct(Bn)-
Since Zy; = Z for all Z € Z, it follows from the monotone convergence theorem that

E[Zow(Zir)] = ElZowon(Zi7))]
=/ TLILH;OE {ZO,t (E(Zt,TBnLg\t) - Ct(Bn))}
< sup {E(ZorB)— Egl[Ci(B)]}
BeLo> (%)
=(2).
Combining with (3.2), one gets
ElCy(B)] = pi(B) = ZSUE {E[ZorB] — au(2)}
SV
< sup{E[Z)Z,1B] — E[Z)cw(Z; 7))}
= Ssup {EQO [E(Zt,TB|<gt) — CMf(ZnT)]}
A/
S EQO |:€SZS sZup {E(ZthB‘yt) — Clt(Zt7T)} 5
€Z

and hence (3.1). .
Remark 3.2.
. Since for m € Adm, Cy(X3™) = X", so

X" = Cy (X7

= eSZS SZup {E [ZthX/;i’ﬂ—‘yt] - Oét(Zth)}
Elie

= X" — essinf Z, .
¢ —essinf{ow(Z; 1)}

So

e;selzrif {u(Zy7)} =0. (3.3)
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2. From the proof of Theorem 1.1, one can see that for every Z € Z., and there exists a sequence
(B!)nen C L*°(Zr),which may depend on t, such that

a(Zyr) =/ lim E(ZyrBL|F:) — Cu(BY}). (3.4)
3. Let Ay := {B;Cy(B) < 0}, then

o (Zyr) = esssup {E[ZrB|#]} . (3.5)

By the time-consistency of C, Ay C As for all s <t. As Ci(Cy(B)) = Cy(B), we have for all
s<t
Cs(Ci(B)) = Cs(B),

and similar to [19], one can show that the time-consistency is equivalent to the following
As = As(F) + Ay, (3.6)
where Ag(F) = As N L®°(F o).
For any Z' € Z.,i=1,2 and A € .%;, let
Zs = Z ot +{Z1Ia + Z} ZF T ae sy,
one can see that Z € Z. and Z; 7 = Ztl’TIA + Zf’TIAc. We have the following Lemma

Lemma 3.3. Under the conditions of Theorem 1.1, for any Z' € Ze, i = 1,2 and A € F;, we
have
ar(Z{pIa+ Ziplae) = on(Z}p)a + o (ZE) Lac .

Proof. By direct calculation, one can see

at(Zt{TIA + Zt%TIAc) = esssup {F [(Ztl,TIA + ZgTIAc)B‘ﬁt] — Cy(B)}

BeL>(Zr)
= ess SE}E | {{E[Z}rB|#] — C«(B)} In + {E[Z}1B|#] — Ci(B)} 14}
BeL>®(Fp
< esssup {F [Z,}?TBL%] —Cy(B)} In+ esssup {E [ZETBL%] — Cy(B)} Iae
BeL>®(Fr) BeL>(7r)

= (Zp)Ia+ a(Z7 ) Lae.

On the other hand, for any B € L°°(%r), i = 1,2, let B = B1I4 + Byl e, which also belongs
to L (Zr). It follows from the .Z;-regularity of C; that

o Zigla+ Ziplae) > B |(ZipIa+ Z3p1ae) Bl 7] - Cu(B)
_ {E[Z;Tglgt] - Ct(Bl)} Ta+ {E[Z,ETBL%] - Ct(B)} Lae,

thus at(Ztl’TIA + ZE’TIAC) > at(ZtlT)IA + at(Zf’T)IAc and the proof is complete. O
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For any Z' € Z,, i = 1,2, let
A ={E(Z}1B|#) — u(Z}1) > E(Z}1B|.F) — u(Zi7)}
one can see that A € .%; and
Zs = Z ot + {Z{Ia + Z} ZF T ae H sy
also belongs to Z. and Z;r = Ztl,TIA + ZtQ,TIAC' It follows from Lemma 3.3 that oy (Z;7) =
ar(Zip)Ia + ar(ZE) L4 and thus
E(ZyrB|F:) — alZur) = {E(Z}pB|#) — ai(Zhe)  1a+ {E(Zt%TBWt) - at(ZgT)} Iae
={B(zi:B|7) - a2 | V{B(Z2B|7) - 0l Z31)}

from which one can see that the set {E(Zt7TB‘ﬁt) —ou(Zyr); Z € Ze} is closed under V, thus
we have the following corollary

Corollary 3.4. Under the conditions of Theorem 1.1, for every B € L>®(%r), there exists a
sequence (Z™)nen C Ze such that

Ci(B) =/ lim E(Z{rB|#1) — au(Z]'r).

Lemma 3.5. Under the conditions of Theorem 1.1, for all Z € Z, and s < t, we have

Zsas(Zsr) = E [ Zvow(Zyr)| Fs] + esssup E [Z;B|F], (3.7)
BEAs(yz)

where Ag(Fy) = As N L™ (F).
Proof. Tt follows from (3.6) that any B € A, can be decomposed into the following
B = By + Bs,
where By € As(#;) and By € A;. Therefore,
E[ZrB|ZF| = E|ZB1|F] + E [E|Zr By| )| F)

< esssup F [ZtB‘g"s + F [esssup E[ZTB‘ﬂ}]

BeAs(Ft) ] BeA;
= esssup F [ZtB‘g"s] + FE [Ztat(Zt,T)‘g"s] ,
BeAs (%)

thus Zsas(Zs7) < E [Ztat(ZnT)!ﬁs] + esssup E [ZtB‘ﬁs]. On the other hand, there exists
BeAs(Ft)

a sequence BY, € L* such that

a(Zr) =/ lim E[Z,rBL|Z] .
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We need to show that

EZio(Zyr) | Fs) =/ lim E [Zr By | Z4] . (3.8)

It is easy to see that {E [ZTBHﬂ}] ;n €N } is an increasing sequence and for each n
E [ZrB}|Fs| < E[Zyoy(Zyr)|Z).-
Since B! € L (%), there exists a constant ¢ such that B > ¢, thus for each A € .Z
E [E[ZrBi|#)1A| = E [E[ZpBY|.Z5|14] > cE[Z14] > —c0
From the monotone convergence theorem we get

EZyow(Zyr)la] =lim, .o E [E[Zr B} %)14]
= limp—o0 E [E[ZrBL|F)14)
= E [/ limy o0 E[Z1Bl| F14)

holds for every A € Z, thus E[Ziaw(Zy1)|Fs| =/ limy, .00 E[Z7 BL|F], which is (3.8). For
each By € As(#), let B" := By + B! € As, thus

E[Z:Bi|F] + E [Ziaw(Zi0)| Fs] = B [ZrBi| ]+ / lim E[ZrB,| 7]
=/ lim E [ZpB"|.Z]
n—oo
<esssup F [ZTBL?S]
BeAs
= ZSOCS(Z&T).

The arbitrariness of By gives

E [Zyou(Zyr)|Fs| + esssup E[Z;B|F| Zs < as(Zs )
BeAs(Ft)

and the proof is complete. O

Corollary 3.6. Under the conditions of Theorem 1.1, for every Z € Ze, {Zia(Zy.1) hejo,m) 5
a nonnegative supermartingale with terminal value Zroq(Zrr) = 0.

Remark 3.7. Under the conditions of Theorem 1.1, for all Z € Z. and s,t € [0,T] with s < t,
let as(Zst) == esssuppea, () £ [Zs,tBL?S], then (3.7) can be rewritten as

Zsas(Zs,T) =F [Ztat(Zt,T)‘gas] + Zsas(Zs,t)-
We have the following theorem

Theorem 3.8. Given a family of convexr nonnegative functionals

o= {a(Z) = (O‘S(Z&t))ogsqu; Z e Ze}

such that asy @ Ze — LY (Fy,[0,00)) with E[Zs o (Zi1)] < o0 for any Z € Ze and 0 < s <
t < T satisfies
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(1) as(Zs1) = as(Zsy) + E|Zs y0u(Zy 1) | Fs), for each Z € Ze and 0 < s <t <T';
(i1) e;seizrlf {a(Zi1)} =0, for each t € [0,T7;
(iii) for any Z' € Ze, i = 1,2 and A € Fy, let Zg = Z ey + ZH{ 2} Ja + ZE T ac }s¢, then
ar(Zir) = a(Zlp)a + ar(Z] ) Lac;
(iv) limpN 0 (Zigsn) =0, for Z € Ze and t € [0,T),
then C' = {C(B) = (C¢(B))ejo,r), B € L>=(Fr)} defined by

Cy(B) = esZsesZup {E[Zy7B|#] — a(Zur)} (3.9)

is an S-related dynamic convex valuation.

Remark 3.9. 1) It follows from (iii) that for any Z° € Ze, i = 1,2 and Zu = Z ot +
Z} 7} dy>y, then

A~

Oét(Zt,T) = OZt(ZtQ,T)-
2) From (i) and (i1), for any s <t

0= e;seizrif {as(Zs1)} > e;seizrif {as(Zse)} + egseizfifE[Zs,tat(Zt,T)fys]a

which implies that

inf Z = inf E|Z VA Z,| = 0.
essinf{as(Zss)} =0 and  essinf E[Z,404(Zy7)|Fs] =0
3) Since {E [Zt7TB|ft] —ou(Zyr); Z € Ze} is closed under \, there exists a sequence (Z™)pen C
Ze such that
Ci(B) =/ lim E (ZlrB|.F) — au(Z)'7) -

4) Under the conditions of Theorem 3.8, for any s <t and B € L (%), we have

Cs(B) = esZseSZup {E[Z:tB|Fs] — as(Zss)} - (3.10)

In fact,
Cs(B) =esssupyey, {E [ZswB|Fs| — as(Zsr)}
< essSuUpzez, {E [Zs,tBLgas] - as(Zs,t)} s

since as(Zs1) > as(Zsy) > 0. On the other hand, for any Z' € Z., i = 1,2, let Z, =
Zalycy + Z} 22 Lu>t, it follows from (i) that
C,(B) >E (ZS,TB\%) — as(Zs1)

= E[Zs,tBLgas] - as(Zs,t) - E[Zs,tat(Zt,Tﬂys]
= E(Z1,B| %) — as(Z},) — E(ZL00(Z 1) | Fs),
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holds for all Z? € Z,, thus
Cs(B) > E(Z),B|%s) —as(Z,,) — E[Z,, ess inf AVAERIEA
b K b E e

=F (Z;tB‘ﬁs) - O‘S(Zs{t)a

therefore Cs(B) > esssup {E [Zs7tB|fs] — as(Zs,t)}, and (3.10) follows.
Z€EZe

Lemma 3.10. Under the conditions of Theorem 3.8, for any B € L (%r), C(B) defined
by (3.9) is a bounded RCLL semimartingale such that {Zt (C(B) + at(ZAnT)); te [O,T]} is a
supermartingale for any Z € Z .
Proof. For any Z € Z, let
202) =42 €2 ZIyy = 21y},
so that Zy(Z) C Zs(Z) for every s < t, and for every Z € Zy(Z), Z can be rewritten as
Zy = Zuluct + Z1Zyr Lzt

and thus a(Zs ) = aS(ZA&t) +F {Zs,tat(ZnT)!ﬁs]. Therefore,

Zs (CS(B) + as(Zs,T)> = Zs €sssup {E [ZS,TBLQ?S} - as(Zs,T)} + Zsas(Zs,T)
ZE€Le

= esssup {E [ZTBL?"S] — Zsas(Z&T) + ZSaS(ZS,T)}
ZEZS(Z)

> esssup < E [ZTB‘L?;] — Zsas(ZsyT) + Zsas(Zs,T)}
ZEL(Z)

= esssup | E [Z0B|F] — Zeas(Zer) — ZE| Zoycu(Zr)| Fd]
Zeli(Z)

+Zsas(Zs,t) + ZSE [Zs,tat(ZAt,T)Lgs] }

— esssup {E (2rB| 7] - Elfou(Zor)| ] + E|Zon(Zor)| 7] } .
ZEL(Z)

A~

From Remark 3.9 3), one can choose a sequence (Z"),en C Z¢(Z) such that
Cy(B) =/ HILIEOE[ZZTB’L%] - Oét(ZtTfT) .
It follows from the monotone convergence theorem that

7, (CS(B) + as(Zs,T)) > ess sup {E [20B|Z] — E[Zioy(Z1)| 7] + E|Ziou(Zr)| 7] }
ZEeL(2)

> lim B{Z{E[2}7B|%] - aulZ'r)} !%} + E[Zvw(Zyr)| 7]
= E{Z / lim {E[Z!rB|#] - ai(Z}0)} | 7.} + Bl Ziow( Zir)| 7]
_ E{Zt{Ct(B) + at(Zt,T)WZS] ,
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thus {Zt (Cy(B) + ozt(ZAt,T)); t €10, T]} is a supermartingale. Similar to El Karoui and Quenez

(1995)["Y) or Laurent and Pham (1999)1?), one can show that {Zt (Ce(B) + ay(Z, 7)); t €0, T]}

has an RCLL version. As Za(Z) := {Zia(Z7);t € [0,T]} is also an RCLL supermartingale,
thus C'(B) has an RCLL version. O

Corollary 3.11. Under the conditions of Theorem 3.8, if there exists Z € Ze. such that
Zi(Cy(B) + a¢(Zy1)) is a uniformly integrable martingale, then for everyt € [0,T

Ct(B) =F |:Zt7TB‘L9Zti| - at(Zt7T), a.s.

Proof of Theorem 3.8. One can easily check that C defined by (3.9) satisfies (A), (B) and
(C) in the definition of the S-related DCV. For any A € .%; and B; € L*™°(Zr), i = 1,2,

E [Zi7(Bila + Bolae)| 7] — at(Zt,T)
=A{E [ZixB:\| 7] — ai(Zyr)} Ia + {E [ZowBo| F] — u(Zir) } Lae

< esZssZup {E [Zt TBl|Jt] — oy (Zy, T)} Iq+ esZssZup {E [Zt TBQ‘Jt] —ouy(Zyr } I e
e €
= Cy(B1)Ia + Ci(B2)14e,

thus Ct(BllA + Balye) < Ct(Bl)IA + Ct(Bg)IAc On the other hand, for any Z° € Z,, i =
1,2, let B = Byl + Balae and Zy = Z oy + ZHZE T4 + ZfSIAc}IS>t, from (iii), one gets
a(Zyr) = a(ZLp)Ia + ou(ZEp)ae and Zyr = Z}pIa + Z}pLac. Therefore,

Ct(.é) == esZs SZI‘IP {E [Zt7TB|yt] - Oét(Zth)}
Elie

>E [Zt Té\yt} —as(Zy1)
={EB|2}:B| 7| - a2}p)} 1+ {E 220 Ba| 7] — au(ZE0) } L,

thus Cy(B1Iag + Balac) > Cy(B1)Ia + Ci(Bg)I4e, which implies that Cy(B) satisfies (D), i.e.,
the .Z-regularity. For any m € Adm and ¢t € [0,7T, it follows from (ii) that

Cu(Xg") = esssup {E[20X07|7] - au(Zir)} = XD = essint{an(Zr)} = X7

and the S-related property of C follows. We now show the time consistency of C, i.e., for any
s < tand B € L>®(Zr), it follows from (i) and (3.10) that

CS(Ct( )) - eSZSSup {E[ s,tCt(B)Lgs] - as(Zs t)}

> esZssup {E[ E(Zy1B|%:) — Zs you(Zi 1) ‘355] — Qg Zs,t)}

== es;sup {E [ stZt TB|9] [ stat(Zt T)|<gs] - OZS(Z&t)} (311)
€7

—esZssZup{E[ TB|J ] —aS(ZST)}

= Cy(B).
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On the other hand, there exists a sequence (Z"),en C Z, such that
Ci(B) =/ lim E[Z]B|F] — a(Z}'y) ,
thus for any Z € Z, let ZI = Z,Iy<t + Z;Z} I>1, then

E (7. {E<szB|ft> — aulZpp) } | 7] — aslZ0)
E|Z, 700 B| 7)) — E[Zstat (Z0p )\ﬁs} — as(Zsy)
B[220 B| %) - B | Z20a(Z70)| 7] = as(22)
:EZ;TBM —os(Z77)

< ess sup{E[ZS,TBL%] —as(Zs 1)}
Z€Z,

= Cs(B) .
From an analogous argument as in the proof of Lemma 3.5, one can derive
E [Zs,tCt(B)Lng] _as(Zs,t) :/ TLILH;OE [Zs,t {E(Z;LTB’LQ-‘}) - at(ZtT,LT)} ‘ys] _as(Zs,t) < CS(B)v

thus

Cs(Cy(B)) = esZsesZup {E [ZS,tCt(B)‘ﬁs] — as(Z&t)} < Cy(B). (3.12)

From (3.11) and (3.12), we have
Cs(Ci(B)) = Cs(B)

and the time consistency follows. U

4 Two S-related DCVs generated by a and &

In this section we will consider two special penalty functionals & and & satisfying the conditions
of Theorem 3.8, and the correspondlng S-related dynamic convex valuations generated by a
and & denoted by C and C respectively. We then describe the dynamics of C' and C by two
backward semimartingale equations.

~ Z
For any Z € Z., it follows from Corollary 2.5 that Z; := Z_g can be represented in the

t

thzog{—/ iudﬂu—f—/ /l(u,y)N(du,dy)+L}t,
0 0 JR

where [(u,y) is a Z-measurable function with I(u,y) > 1 and L a continuous local Q°-

following form

martingale strongly Q°-orthogonal to M with Ly = 0. For any s < t

Zey=1- / Zg o ludM, + / / Zgul(u,y)N (du, dy) + / Zgu_dLy,
Is,t] Is,¢] /R 1s,¢]
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- Z ~ L
where Z,; = 2t and Lsu— = = for s < u. Given two predictable processes & and 1 with

S S .
0<c<é <C<ooand0<c<n<C <ooanda P-measurable function §(u,y) with
0<c<&(u,y) <C < oo, where ¢ and C are two positive constants, we define for each Z € Z,

Gs(Zss) = Ego < [ ﬂ Zoulla)2d Ay + / Zs,u_nud<L>u|ﬂ‘s> (4.1)

Js.t]

and
65(Zss) = Ego ( / / 2 €ty )1 ()2 K (s dy ) d Ay + / Zs,unud<L>u|%>. (4.2)
Is,t] /R Is,t]

4.1 The S-related DCV generated by &
To consider the S-related dynamic convex valuation generated by &, we introduce
Z = {Z € Ze; ao(Zor) < oo}

Lemma 4.1. For any ANS ffli = 1,2 and an F;-measurable set D, let Z, = Z&qu +
Ztl{Z;uID + ZguIDC}IuZt; then Z € Z.

Proof. One can easily see that Z € Z.. From
Egolao(Zox)] < Ego[ao(Zsr)] + Egolao(Z5r)] < oo,
one can see that Z € Z. O

It is easy to see that for each Z € 2 and s < ¢

essinf q ag Zs } =0, 4.
ssinf {6s(Zs) (4.3)
and . 3 ) 3

as(Zsr) = as(Zsy) + Ego[Zspou(Ze )| Fd), a.s. (4.4)

One can easily check that

(ii’) for any Z' € Z, i = 1,2 and a Fp-measurable set D, let Z, = Z I« + Ztl{Z;uID +
Zt%uIDC}qutv then dt(Zt,T) = dt(Zt{T)ID + dt(Zt%T)Ich

(iv’) }lli{‘%dt(Zt,Hh) =0, forany Z € 2 and t € [0,T).

We have the following lemma

Lemma 4.2. For any Z' € %, i=1,2 and X € [0,1], we have

Gy (AZL+ (1= NZ2,) S 2AG,(Z1) + (1= Na(Z2), as.
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Proof. For any Z' € %, i = 1,2, there exist a P-measurable function I*(u,y) and a continuous
local martingale L' with L) = 0 and (L, M) = 0 such that

Zi = 7] - / (1%) dM —i—//l’uy (du, dy) —|—Lz}t

For any A € [0,1] and s < t, one easily derives that Z,; := )\Z;t +(1-N)Z2

5 satisfies the
following equality

b \ZL — —\N)Z2 —
Zst - 1 o / ZS,U—{ ~ — = (ll)u + ~ ( ) = Q)U}dMu
s AZL, +(1-NZ2, AL, +(1 A)qu_
t )\Zslu, 1 b ( )‘)Zguf 2
+ / Zsu——= ———dL. + / Zsu—= dL?
. AL, +(1=NZ2, s AZL, +(1-NZ2,
tro \Z! ( —\)Z2 g
+ D L Mu,y) + — U %(u, y) YN (du, dy).
J LB g e g, i e )

Thus
as(A\Ziy + (1= NZ2))
51 T —y 2
~ ~ AZ; uf(ll)u (17)‘)Z§ u7(12)u
= Eqo <f]s,t]()‘Z;,u— +(1 - )‘)ZSQ,U—)&*{ ,\Zl 4;(14\)23 — + \Z} u_+(1’f,\)23 u— } dAy

f )\Zs u— T ( )‘)Z 77ud<>\zl (1 /\)Zf,_ Lo+ AZL _+(1-N)Z2 L >u|‘%>’)

< EQO <f]s 1 u [)‘Zsl,u—(fl\l—ji + (1 - )‘)Zsl,u—(p)Z] dAy

Ly AL AL A)zgu_d<L2>u\3;8)
- )\ds(zg,t) + (1 - )‘)O‘s(Zsz,t)'

U
Theorem 4.3. For Z € %, let as(Zs) be defined by (4.1), then C = {C (C’t(B))te[O,T]aB €
L (%) } defined by
ét(B) — essSsup {EQO |:Zt TBL?}] - Oét(Zt T)} (4.5)

Zew

is an S-related dynamic convex valuation.

Proof. Similar to Remark 3.9. 4) of Theorem 3.8, one can show that for any B € L*>°(.%;) and
s < t,
C’S(B) = esssup {EQO [ZS,tBL?"S] — 075(25,1:)}-
zeZ
Furthermore, from an argument as in the proof of Theorem 3.8, C’t( ) satisfies the .%;- -regularity,
(i.e., for any #-measurable set D and B; € L™ (%), i = 1,2, Ct(BlID+B2IDC) Ct(Bl)ID+
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C’t(Bg)I De, a.s.) and the S-related property. As for the time-consistency of C, for any s < t
and B € L>*(Zr)

C’S(Ct(B)) = esssup {EQO [Zsyt(j’t(B)‘ﬁs} — ds(Zs,t)}

Zex
> esssup {EQo {ZS,tZt7TB|§55} — Egqo [Zs,to?t(Zt,T)‘g‘}} — ds(Zs,t)} 46
Zex (+0)
=esssup {E [Z, 1 B|.Fs] — as(Zs 1)}
ZeZ
= Cs(B).

On the other hand, {EQO [Zt7TB\ﬁt] - dt(Zt,T); 7 e QF} is closed under V, thus there exists a

sequence (Z")peny C 2 such that
Cu(B) =/ lim Eqo[Z}'pB|7] — ai(Z7r) |
thus for any Ze %, let Zo" = Zylyer + ZtZ{fquzt, then

Eqo[Z:4Co(B)| ] — 6s(Zsy) ) ) _
=/"limy 0 EQO [?s,t{EQO(ZtT,LTB‘yt) _~dt(ZgT)}|ys] - ds(Z;s‘,t
=/ limy, .00 Ego [gs,tngB@] — Ego [Zs101(2)'7)| Fs] — @s(Zsp)
=/ Wiy o Eqo| 2,7 B| 7] — &s(207)

< €ss Sungfz){EQo [ZS,TBLQIE] - ds(Zs,T)}
— &y(B).

Therefore o o . )
Cs(Cy(B)) = ess sup {EQo [Zs,tCt(B)\ﬁs} — dS(ZS,t)} < Cy(B). (4.7
zZeZ

From (4.6) and (4.7), we have

Cs(Cy(B)) = Cs(B)
and the time consistency follows. U

Similar to Lemma 3.10, we have the following lemma

Lemma 4.4. For any B € L®(%r), let C(B) be the dynamic convex valuation (DCV) related
to S defined by (4.5), then

1) {Zt (C’t(B) + dt(Zt7T)); t €10, T]} is an RCLL supermartingale under Q° for any Z € % ;

2) if there exists Z* € & such that Z} (C’t(B)—l—dt(Z;T)) is a uniformly integrable martingale
under Q°, then for every t € [0,T]

Cy(B) = Ego | Z{1B| %) — au(Z{ 1), a.s.
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To obtain the dynamics of C/(B), for any Z, = ZoE{ —/ ZNUdJTI/u—i—/ / I(u,y)N (du, dy)—l—L}t,
0 0o JR
we introduce

At(Z) ::/ Zu—fu([u)QdAu +/ Zu—nud<L>u
10,¢] 10,¢]

A(Z) is a continuous increasing process and the following equality holds

Go(Zsr) = ZLEQO (M (2) - A(2)] 2] as. (4.8)

Thus we have the following corollary

Corollary 4.5. For any B € L>®°(%r), let C(B) be the S-related DCV related to S defined by
(3.9), then

1) {ZC}(B) — At(Z); te [O,T]} is an RCLL supermartingale under Q° for any Z € & :

2) if there exists Z* € % such that Z;Cy(B) — A(Z*) is a uniformly integrable martingale
under Q°, then for every t € [0,T]

Cy(B) = Eqo [Z{1B|#] — au(Z} 1), a.s.
Proof. From (4.8), one easily derives
Z:Cy(B) — Ai(Z) = Z(Cy(B) + &4(Zyr)) — Ego[A1(Z)|F).

Since {Ego [Ar(Z )|-#]} is a uniformly integrable martingale under Q°, 1') and 2') follow from
Lemma 4.4. O

For a given B € L (%), we consider the following backward semimartingale equation (BSE)

§u !
Y, =Y,- VdA, — [ —d(L 0 VM, + Ly
0 477u
/ / 7a(u y {9 +\/§§ug0u}]\7 du,dy), t<T; (4.9)
Yr =B.

The solution of the BSE (4.9) is a 4-tuple (Y0, @,f/) satisfying (4.9) such that

(1) 6 is a predictable process such that 6 - M is a BMO- martlngale under Q°. ¢ is a
P-measurable function with o(u,y) > —1 and ¢, = [ 2 Jl(u o(u,y)K (u;dy). Also

fot Jr e(u, y)N (du, dy) is a BMO-martingale under Q° with fo Jg p(u, y)? K (u; dy)dA, <
¢ < 00, Q%-a.s. for some c € R;

(2) L is a BMO martingale under Q%( i.e., L € BMO(Q) ) with <I~/>T < ¢ < oo, Q-as.,
which is strongly orthogonal to M under Q%
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(3) Y is a bounded RCLL semimartingale.

Remark 4.6.

. If S is a continuous semimartingale, i.e., oo(u,y) = 0, the BSE equation (4.9) is the same as
(4.5) of Mania and Schweizer(2005)%4.

. In general, the BSE (4.9) might not have a solution. However, in many cases, the BSE (4.9)
T
has a solution. FEspecially, when B == + / TudSy for some m € Adm,
0

O(u) =o1(u)my,
e(u,y) =0,
Ly 0,
t
Y=ot [ mas,
0

is the solution of the BSE (4.9).

. If BSE (4.9) has a solution given by (Y,0,0, L), one can see that there exists a constant still
denoted by c such that

T T B
/ gu(ﬁﬁu)szu + / nud<L>u <c< oo, QO'CL-S-, (4.10)
0 0

since € and n are two bounded positive processes.

Theorem 4.7. If the BSE (4.9) has a solution denoted by (Y, 0, ¢, L), then for allt € [0,T]
Cy(B)=Y;, Q°-a.s.

Proof. For any Z € %, there exist a continuous local Q"-martingale L with Ly = 0 and
(L, M) =0, and a functional | € & such that

~ t t o ~ t
Zy=1- / Zy_ly,dM, +/ / Zy—l(u,y)N (du, dy) —l—/ Zy—dL,, .
0 0 JR 0



4 TWO S-RELATED DCVS GENERATED BY & AND & 24

If BSE (4.9) has a solution (Y, 6, ¢, L), from Itd’s formula we find that

t
Y, Z; — At YOZO—/ Yy ZuludM, —|—/ /Y Zu_l(u y)N (du dy) + /Yu_Zu_dLu
0
- 1 - t -
| 7 & p2aa, —1/m2@_———d<L%L b/ Z@_H()dALL+l/’Zh_dLu
2 0 41y 0 0
t 5 oz(u ?/ ~ N
+ Zo {9( + V26,00 } N (du, dy)

wluB(u )dA + Z _d(L, L),

|
N~ v %\

+ Zu,l ) {9 +\/§§u¢u}ﬂ(duady)
t
- 75u(lu)2dAu - Zufnud<L>u
0
t ~
:yozo+/ W {0(u) — Y, 1, Ydl,
0

_|_

o~
b
IS
|
— =~

Yo l(u,y) + %{1 +1(u, y) }{0(uw) + \/Eﬁuaﬁu}}N(du, dy)

t
dLu+/ Zy—dL,
0

~+

+
<5
Q‘Nz

ﬁ
I
w|m

ﬁ

(Gu)? — 223l + 2<iu>2}dAu

+

S—S———

o

- 1 - t - t
Zu_—d<L>u—|—/ Zu_d(L,L>u—/ Zy_mud(L),,
4nu 0 0

As £ and 7 are positive, bounded and predictable processes, {Y}Zt Ay(Z);t €[0,T)} is a local
Q- supermartingale. Furthermore, as Y is a bounded process, Zisa umformly integrable Q°-
martingale and A;(Z) < Ar(Z) and Eqo[Ar(Z 7)| = Gor(Z) < oo for Z € %, so one sees that
(YiZy — A(Z);t € [0,T]} is uniformly integrable under Q°. Hence, {Y;Z; — Ay(Z);t € [0,T]} is
a true QY-supermartingale for any Z € 2. Therefore, for any Z € %

Y,Z, — Mi(Z) > Eqo[BZy — Ar(Z)| 7],
thus
Y: > Ego [Zt,TB‘yt] — dt(Zt,T)
and hence

Yt > ess sup {EQO [ZLTBL%«/] - dt(Zt,T)} == ét(B), a.s.
Zew
Furthermore, if we let

1 —~ ' 1 ~ 1l
Z5 =& —/ —@udMu—f—//—gp u,y)N (du, dy +/ —dL,}.,
! { 0 V2 0 Jr V2 (. 9N ) 0 2N b
it follows from (4.13) that
do(Zor) = Eqo( [y Zou—Eullu)?dA, + fo Zou Nud(L).)

l
00 [Zor{ J €u(l)?dAy + [ nud(L),}]
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for some constant ¢ > 0, thus Z* € 2 and {V;Z; — At(Z*);t € [0, 7]} is a uniformly integrable
Q"-martingale. Thus
Y2 — M(Z) = Eqo[2:B ~ Ar(2")| 7).

which implies
Vi = BulZigBlR] i)
< esssup;. {EQO [Zt,TB|Lth] - dt(Zt,T)}
= Cy(B).

So finally we get the desired result .
Cy(B) =Y; a.s.

for all t € [0,T], which completes the proof. O

4.2 The S-related DCV generated by &

We now consider the S-related dynamic convex valuation generated by &. Let
P = {Z € Ze: @O(ZO,T) < oo}

By similar arguments as in the preceding case, one can show that for each Z € % and for any
s<t

(i”)  essinf {ds(Zs,t)} =0;
zZeZ

(i) &s(Zox) = 6(Zsy) + Ego[Zsséu(Zi)| ), Q%-aus.;

)

(iii”) for any Zie %, i=1,2 and a F-measurable set D, let Z, = Z&qu + Z}{Zt{uID +
Z¢ Ipe YLz, then a4(Zyr) = &u(Zlp)Ip + u(ZE7) Ipe;

iv”) lim 6y (Z, =0, Q%a.s.
(iv?) hl{% i(Zy1+n) , Q@ -a.s
Also for any Zi € %, i=1,2 and X € [0, 1],
op (AZsl,t +(1- )‘)252,1:) < A&S(Z;,t) +01- )\)dS(ZSQ,t)7 Q-as.

Adapting the proof of Theorem 4.3, one directly derives

Theorem 4.8. For Z € %, let Gs(Zs 1) be defined by (4.2), then C = {C’(B) = (C’t(B))te[O,T]aB €

Le°(Fr)} defined by

C’t(B) = esssup {EQO [Zt7TB|§5t] — dt(Zt,T)} (4.11)
Ze?

is an S-related dynamic convex valuation (DCV).
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For any Z, = ZoE{ — [, l,dM, + IN le(u,y)N(du, dy) + L}, € %, we introduce

t o -
- [ [ 2wy Ksdnda, + [ Zondw),
0JR 10,¢]

Similar to Corollary 4.5, we have the following dynamic principle

Corollary 4.9. For any B € L™(%r), let C(B) be the S-related dynamic convex valuation
defined by (4.11), then

1) {Zté’t(B) - At(Z); te [O,T]} is a RCLL supermartingale under Q° for any Z € % ;

") if there exists Z* € Z such that Z:Cy(B) — Ay(Z*) is a uniformly integrable martingale
under Q°, then for every t € [0,T]

ét(B) :EQO[ tTB‘ﬁt] - ( tT) a.s.

We consider the following backward semimartingale equation

v, —m—//ww><w W@M4—05f@>

w)dM, —I—// {02 “ y (u) + 2§(u,y)4p(u,y)}N(du,dy) + Ly, (4.12)

Yr =B
The solution of the BSE (4.12) is a 4-tuple (Y, 0, @,f/) satisfying (4.9) such that

(1) 0 is a predictable process such that 6 - M is a BM O-martingale under Q°. pisa P-
measurable function with ¢(u,y) > —1 such that fg Jg (u,y)N (du, dy) is a BMO under

Q" with fonR o(u,y)? K (u; dy)dA, < ¢ < oo, Q°-a.s. for some ¢ € R;

(2) L is a BMO martingale under Q°( i.e., L € BMO(Q") ) with <ﬁ>T <c< oo, Qas.,
which is strongly orthogonal to M under Q%

(3) Y is a bounded RCLL semimartingale.

Remark 4.10.

. Even if S is a continuous semimartingale, i.e., oa(u,y) = 0, the BSE equation (4.12) is quite
different from (4.5) or (4.9) of Mania and Schweizer(2005)%4], therefore the S-related DCV
generated by & is totally different from the ’dynamic exponential utility indifference valuation’
(see [24]). We think that the wealth related valuation is more realistic than the one related to a
utility function and the more or less artificial corresponding indifference price.
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2. In general, the BSE (4.12) may not have a solution. However, in many cases, the BSE (4.12)

T
has a solution. Especially, when B = x + / TudSy for some m € Adm,
0

O(u) =o1(u)my ,
e(u,y) =0,
Ly 0,
A t
Y; =z +/ T, dSy,
0

is also the solution of the BSE (4.12).

3. If the BSE (4.12) has a solution given by (Y,Q,ap,ﬁ), one can see that there exists a constant
still denoted by ¢ such that

T T B
/ / &(u, y)p(u, y)* K (u; dy)dA, +/ Nud(L)y, < ¢ < 00, Q°-a.s., (4.13)
0 JR 0

since € and n are two bounded positive process.

Theorem 4.11. If the BSE (4.9) has a solution denoted by (Y,Q,ap,ﬁ), then for all t € [0,T]

Ci(B)=Y;, Q°-as.
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Proof. Recall that I, = / JQ(Q(L’ g)/)l(u, y) K (u; dy), so it follows from Itd’s formula that
R 01U

YtZ—At( Z) = Y()Zo—l—/ Z,{H( )—Yu,[u}dﬂu
0

+At42u_{yu_z<u,y>+{"““’”e( ) + 26 (u, ) }{1+l u y>}}N<duvdy>

/O/R §u W(u y) K (u; dy)dA,
_ /OtZu_ﬁd@u /O Zy_d(L,L) — /M G mad(L)

/ /Z _&(u,y {z u,y) — @, y) Y K (u; dy)dA,
/0 u_477ud<L>u /Z _d(L,L), —/M Zy—nud(L),,

The rest is the same as the proof of Theorem 4.7. U

In the above results we present a to our knowledge new valuation which relates the value
of general claims directly to accessible wealths. In this way we avoid to use controversially
discussed pricing rules like e.g. utility indifference. This new valuation has all desirable prop-
erties and even holds in the general jump market given above. Accessibility of this valuation is
guaranteed by the representation as BSE. It would be interesting to put different valuations to
a benchmark test. This however goes far beyond the aim of this research and far beyond our
numerical capabilities.
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