Generalising a result of Shtipel'man

Nikolaas D. Verhulst

TU Dresden

The mathematics lesson with

Dr. Nikolaas Verhulst

TU Dresden

Figure: The anatomy lesson with Dr. Nicolaes Tulp (from Wikipedia)

Shtipel'man's result

Shtipel'man's theorem
Every valuation on $\mathbb{D}_{1}(k)$ is abelian.

Abelian valuations

Definition

Let D be a skewfield and let Γ be a totally ordered group. A valuation is a surjective map $v: D \rightarrow \Gamma \cup\{\infty\}$ satisfying:
(V1) $v(x)=\infty \Longleftrightarrow x=0$
(V2) $v(x y)=v(x) v(y)$
(V3) $v(x+y) \leq \min \{v(x), v(y)\}$
for all x, y in D.

Abelian valuations

Definition

Let D be a skewfield and let Γ be a totally ordered group. A valuation is a surjective map $v: D \rightarrow \Gamma \cup\{\infty\}$ satisfying:
(V1) $v(x)=\infty \Longleftrightarrow x=0$
(V2) $v(x y)=v(x) v(y)$
(V3) $v(x+y) \leq \min \{v(x), v(y)\}$
for all x, y in D.

Definition

A valuation $v: D \rightarrow \Gamma$ is called abelian if $v(x y)=v(y x)$ for all x, y in D.

The first Weyl field

Definition

Let k be a field. The first Weyl algebra is defined as $\mathbb{A}_{1}(k)=k<x, y>/(x y-y x-1)$.

The first Weyl field

Definition

Let k be a field. The first Weyl algebra is defined as $\mathbb{A}_{1}(k)=k<x, y>/(x y-y x-1)$.

Ore condition

Let R be a domain and set $S=R \backslash\{0\}$. If $s R \cap r S \neq \emptyset$ for all $r \in R, s \in S$, then R has a skewfield of fractions.

The first Weyl field

Definition

Let k be a field. The first Weyl algebra is defined as $\mathbb{A}_{1}(k)=k<x, y>/(x y-y x-1)$.

Ore condition

Let R be a domain and set $S=R \backslash\{0\}$. If $s R \cap r S \neq \emptyset$ for all $r \in R, s \in S$, then R has a skewfield of fractions.
E.g. $s=x, r=y: y x^{2}=(y x) x=(x y-1) x=x(y x-x)$ is in $s R \cap r S$.

The first Weyl field

Definition

Let k be a field. The first Weyl algebra is defined as $\mathbb{A}_{1}(k)=k<x, y>/(x y-y x-1)$.

Ore condition

Let R be a domain and set $S=R \backslash\{0\}$. If $s R \cap r S \neq \emptyset$ for all $r \in R, s \in S$, then R has a skewfield of fractions.
E.g. $s=x, r=y: ~ y x^{2}=(y x) x=(x y-1) x=x(y x-x)$ is in $s R \cap r S$.

Definition

Let k be a field. The first Weyl field $\mathbb{D}_{1}(k)$ is defined as the skewfield of fractions of $\mathbb{A}_{1}(k)$.

Makar-Limanov's proof, part 1

- Take $0 \neq r$ in $\mathbb{A}_{1}(k)$ and assume $v(x r)<v(r x)$.

Makar-Limanov's proof, part 1

- Take $0 \neq r$ in $\mathbb{A}_{1}(k)$ and assume $v(x r)<v(r x)$.
- Then $v([x, r])=v(x r-r x)=v(x r)$.

Makar-Limanov's proof, part 1

- Take $0 \neq r$ in $\mathbb{A}_{1}(k)$ and assume $v(x r)<v(r x)$.
- Then $v([x, r])=v(x r-r x)=v(x r)$.
- By induction $v\left([x,-]^{n}(r)\right)=v\left(x^{n} r\right)$ for all n.

Makar-Limanov's proof, part 1

- Take $0 \neq r$ in $\mathbb{A}_{1}(k)$ and assume $v(x r)<v(r x)$.
- Then $v([x, r])=v(x r-r x)=v(x r)$.
- By induction $v\left([x,-]^{n}(r)\right)=v\left(x^{n} r\right)$ for all n.

$$
\begin{aligned}
\left(\sum_{i, j} \alpha_{i j} x^{i} y^{j}\right) x & =\sum_{i, j} \alpha_{i j} x^{i} y^{j-1}(x y-1)=\cdots= \\
& =x \sum_{i, j} \alpha_{i j} x^{i} y^{j}-\sum_{i, j} j \alpha_{i j} x^{i} y^{j-1}
\end{aligned}
$$

so

$$
[x,-](r)=r x-x r=-\sum_{i, j} j \alpha_{i j} x^{i} y^{j-1}
$$

Makar-Limanov's proof, part 1

- Take $0 \neq r$ in $\mathbb{A}_{1}(k)$ and assume $v(x r)<v(r x)$.
- Then $v([x, r])=v(x r-r x)=v(x r)$.
- By induction $v\left([x,-]^{n}(r)\right)=v\left(x^{n} r\right)$ for all n.
- $[x,-]$ lowers the y-degree and consequently $[x,-]^{m}(r)=0$ for some m.
- Hence $v\left(x^{m} r\right)=v\left([x,-]^{m}(r)\right)=v(0)=\infty$ but $x^{m} r \neq 0$.

Makar-Limanov's proof, part 1

- Take $0 \neq r$ in $\mathbb{A}_{1}(k)$ and assume $v(x r)<v(r x)$.
- Then $v([x, r])=v(x r-r x)=v(x r)$.
- By induction $v\left([x,-]^{n}(r)\right)=v\left(x^{n} r\right)$ for all n.
- $[x,-]$ lowers the y-degree and consequently $[x,-]^{m}(r)=0$ for some m.
- Hence $v\left(x^{m} r\right)=v\left([x,-]^{m}(r)\right)=v(0)=\infty$ but $x^{m} r \neq 0$.
- Therefore, $v(x)$ commutes with $v\left(\mathbb{A}_{1}(k)\right)$ and consequently $v(x) \in Z(\Gamma)$.

Makar-Limanov's proof, part 1

- Take $0 \neq r$ in $\mathbb{A}_{1}(k)$ and assume $v(x r)<v(r x)$.
- Then $v([x, r])=v(x r-r x)=v(x r)$.
- By induction $v\left([x,-]^{n}(r)\right)=v\left(x^{n} r\right)$ for all n.
- $[x,-]$ lowers the y-degree and consequently $[x,-]^{m}(r)=0$ for some m.
- Hence $v\left(x^{m} r\right)=v\left([x,-]^{m}(r)\right)=v(0)=\infty$ but $x^{m} r \neq 0$.
- Therefore, $v(x)$ commutes with $v\left(\mathbb{A}_{1}(k)\right)$ and consequently $v(x) \in Z(\Gamma)$.
- The same holds, mutatis mutandis, for any $\chi \in k[x]$.

Makar-Limanov's proof, part 2

- Assume $r \in \mathbb{A}_{1}(k)$ is such that $v(r) \notin Z(\Gamma)$.

Makar-Limanov's proof, part 2

- Assume $r \in \mathbb{A}_{1}(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\operatorname{GKdim}_{k}\left(\mathbb{D}_{1}(k)\right)=2$, there are, for any $s \in \mathbb{A}_{1}(k)$, $\chi_{i j}$ in $k[x]$ with $\sum_{i, j} \chi_{i j} r^{i} s^{j}=0$.

Makar-Limanov's proof, part 2

- Assume $r \in \mathbb{A}_{1}(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\operatorname{GKdim}_{k}\left(\mathbb{D}_{1}(k)\right)=2$, there are, for any $s \in \mathbb{A}_{1}(k), \chi_{i j}$ in $k[x]$ with $\sum_{i, j} \chi_{i j} r^{i} s^{j}=0$.
- $v\left(\chi_{i j} r^{i} s^{j}\right)=v\left(\chi_{i^{\prime} j^{\prime}} r^{i^{\prime} s^{\prime}}\right)$ follows.

Makar-Limanov's proof, part 2

- Assume $r \in \mathbb{A}_{1}(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\mathrm{GKdim}_{k}\left(\mathbb{D}_{1}(k)\right)=2$, there are, for any $s \in \mathbb{A}_{1}(k)$, $\chi_{i j}$ in $k[x]$ with $\sum_{i, j} \chi_{i j} r^{i} s^{j}=0$.
- $v\left(\chi_{i j} r^{i} s^{j}\right)=v\left(\chi_{i^{\prime} j^{\prime}} r^{i^{\prime}} s^{j^{\prime}}\right)$ follows.
- Some power of $v(r)$ commutes with some power of $v(s)$.

Makar-Limanov's proof, part 2

- Assume $r \in \mathbb{A}_{1}(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\mathrm{GKdim}_{k}\left(\mathbb{D}_{1}(k)\right)=2$, there are, for any $s \in \mathbb{A}_{1}(k)$, $\chi_{i j}$ in $k[x]$ with $\sum_{i, j} \chi_{i j} r^{i} s^{j}=0$.
- $v\left(\chi_{i j} r^{i} s^{j}\right)=v\left(\chi_{i^{\prime} j^{\prime}} r^{i^{\prime}} s^{j^{\prime}}\right)$ follows.
- Some power of $v(r)$ commutes with some power of $v(s)$.
- $v(r)$ and $v(s)$ commute.

Makar-Limanov's proof, part 2

- Assume $r \in \mathbb{A}_{1}(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\mathrm{GKdim}_{k}\left(\mathbb{D}_{1}(k)\right)=2$, there are, for any $s \in \mathbb{A}_{1}(k)$, $\chi_{i j}$ in $k[x]$ with $\sum_{i, j} \chi_{i j} r^{i} s^{j}=0$.
- $v\left(\chi_{i j} r^{i} s^{j}\right)=v\left(\chi_{i \prime} j^{\prime} r^{i^{\prime}} s^{j^{\prime}}\right)$ follows.
- Some power of $v(r)$ commutes with some power of $v(s)$.
- $v(r)$ and $v(s)$ commute.
- $v(r) \in Z(\Gamma)$.

Makar-Limanov's proof, part 2

- Assume $r \in \mathbb{A}_{1}(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\mathrm{GKdim}_{k}\left(\mathbb{D}_{1}(k)\right)=2$, there are, for any $s \in \mathbb{A}_{1}(k)$, $\chi_{i j}$ in $k[x]$ with $\sum_{i, j} \chi_{i j} r^{i} s^{j}=0$.
- $v\left(\chi_{i j} r^{i} s^{j}\right)=v\left(\chi_{i^{\prime} j^{\prime}} r^{i^{\prime}} s^{j^{\prime}}\right)$ follows.
- Some power of $v(r)$ commutes with some power of $v(s)$.
- $v(r)$ and $v(s)$ commute.
- $v(r) \in Z(\Gamma)$.
- v is abelian.

Makar-Limanov's proof, part 1

- Take $0 \neq r$ in $\mathbb{A}_{1}(k)$ and assume $v(x r)<v(r x)$.
- Then $v([x, r])=v(x r-r x)=v(x r)$.
- By induction $v\left([x,-]^{n}(r)\right)=v\left(x^{n} r\right)$ for all n.
- $[x,-]$ lowers the y-degree and consequently $[x,-]^{m}(r)=0$ for some m.
- Hence $v\left(x^{m} r\right)=v\left([x,-]^{m}(r)\right)=v(0)=\infty$ but $x^{m} r \neq 0$.
- Therefore, $v(x)$ commutes with $v\left(\mathbb{A}_{1}(k)\right)$ and consequently $v(x) \in Z(\Gamma)$.
- The same holds, mutatis mutandis, for any $\chi \in k[x]$.

Makar-Limanov's proof, part 1

- Take $0 \neq r$ in $\mathbb{A}_{1}(k)$ and assume $v(x r)<v(r x)$.
- Then $v([x, r])=v(x r-r x)=v(x r)$.
- By induction $v\left([x,-]^{n}(r)\right)=v\left(x^{n} r\right)$ for all n.
- $[x,-]$ lowers the y-degree and consequently $[x,-]^{m}(r)=0$ for some m.
- Hence $v\left(x^{m} r\right)=v\left([x,-]^{m}(r)\right)=v(0)=\infty$ but $x^{m} r \neq 0$.
- Therefore, $v(x)$ commutes with $v\left(\mathbb{A}_{1}(k)\right)$ and consequently $v(x) \in Z(\Gamma)$.
- The same holds, mutatis mutandis, for any $\chi \in k[x]$.

Makar-Limanov's proof, part 2

- Assume $r \in \mathbb{A}_{1}(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\mathrm{GKdim}_{k}\left(\mathbb{D}_{1}(k)\right)=2$, there are, for any $s \in \mathbb{A}_{1}(k)$, $\chi_{i j}$ in $k[x]$ with $\sum_{i, j} \chi_{i j} r^{i} s^{j}=0$.
- $v\left(\chi_{i j} r^{i} s^{j}\right)=v\left(\chi_{i^{\prime} j^{\prime}} r^{i^{\prime}} s^{j^{\prime}}\right)$ follows.
- Some power of $v(r)$ commutes with some power of $v(s)$.
- $v(r)$ and $v(s)$ commute.
- $v(r) \in Z(\Gamma)$.
- v is abelian.

Makar-Limanov's proof, part 2

- Assume $r \in \mathbb{A}_{1}(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\mathrm{GKdim}_{k}\left(\mathbb{D}_{1}(k)\right)=2$, there are, for any $s \in \mathbb{A}_{1}(k)$, $\chi_{i j}$ in $k[x]$ with $\sum_{i, j} \chi_{i j} r^{i} s^{j}=0$.
- $v\left(\chi_{i j} r^{i} s^{j}\right)=v\left(\chi_{i^{\prime} j^{\prime}} r^{i^{\prime}} s^{j^{\prime}}\right)$ follows.
- Some power of $v(r)$ commutes with some power of $v(s)$.
- $v(r)$ and $v(s)$ commute.
- $v(r) \in Z(\Gamma)$.
- v is abelian.

The vital organs

Lemma of the nilpotent Lie-bracket
Let R be a ring with skewfield of fractions D. Let $v: D \rightarrow \Gamma \cup\{\infty\}$ be a valuation on D. If $r \in R$ is such that $[r,-]$ is a nilpotent Lie-bracket, then $v(r) \in Z(\Gamma)$.

The vital organs

Lemma of the nilpotent Lie-bracket

Let R be a ring with skewfield of fractions D. Let $v: D \rightarrow \Gamma \cup\{\infty\}$ be a valuation on D. If $r \in R$ is such that $[r,-]$ is a nilpotent Lie-bracket, then $v(r) \in Z(\Gamma)$.

One-dimension-for-free lemma

Let $R^{\prime} \subseteq R$ be rings with skewfields of fractions $D^{\prime} \subseteq D$ and let $v: D \rightarrow \Gamma \cup\{\infty\}$ be a valuation on D. Suppose $\left.v\right|_{D^{\prime}}$ is abelian and $\operatorname{GKdim}\left(R^{\prime}\right)=\operatorname{GKdim}(R)-1$. Then v is abelian.

Playing with the organs, part 1

Lemma of the nilpotent Lie-bracket

Let R be a ring with skewfield of fractions D. Let $v: D \rightarrow \Gamma \cup\{\infty\}$ be a valuation on D. If $r \in R$ is such that $[r,-]$ is a nilpotent Lie-bracket, then $v(r) \in Z(\Gamma)$.

Playing with the organs, part 1

Lemma of the nilpotent Lie-bracket

Let R be a ring with skewfield of fractions D. Let $v: D \rightarrow \Gamma \cup\{\infty\}$ be a valuation on D. If $r \in R$ is such that $[r,-]$ is a nilpotent Lie-bracket, then $v(r) \in Z(\Gamma)$.

Corollary

If R is a domain satisfying the Ore condition and where [$x,-]$ is nilpotent for every $x \in R$, then any valuation on the skewfield of fractions of R is abelian.

Playing with the organs, part 2

GKdim of Ore extensions

Suppose D is a skewfield with a finite dimensional generating subspace V. If σ is a $Z(D)$-automorphism, δ is a σ-derivation, and $\sigma(V) \subseteq V$ then

$$
\operatorname{GKdim}(D[x ; \sigma, \delta])=\operatorname{GKdim}(D)+1
$$

Playing with the organs, part 2

GKdim of Ore extensions

Suppose D is a skewfield with a finite dimensional generating subspace V. If σ is a $Z(D)$-automorphism, δ is a σ-derivation, and $\sigma(V) \subseteq V$ then

$$
\operatorname{GKdim}(D[x ; \sigma, \delta])=\operatorname{GKdim}(D)+1
$$

Corollary

Suppose D is a skewfield with a finite dimensional generating subspace V. If σ is a $Z(D)$-automorphism, δ is a σ-derivation, $\sigma(V) \subseteq V$ and all valuations on D are abelian, then all valuations on $D[x, \sigma, \delta]$ are abelian.

Examples

The following are some examples of such Ore extensions:

Examples

The following are some examples of such Ore extensions:

- Higher Weyl-fields, i.e. $\mathbb{D}_{n}(k)$.

Examples

The following are some examples of such Ore extensions:

- Higher Weyl-fields, i.e. $\mathbb{D}_{n}(k)$.
- Quotient fields of quantum algebras.

Examples

The following are some examples of such Ore extensions:

- Higher Weyl-fields, i.e. $\mathbb{D}_{n}(k)$.
- Quotient fields of quantum algebras.
- Quotient fields of quantum Weyl algebras.

Examples

The following are some examples of such Ore extensions:

- Higher Weyl-fields, i.e. $\mathbb{D}_{n}(k)$.
- Quotient fields of quantum algebras.
- Quotient fields of quantum Weyl algebras.

Hilbert fields are non-examples.

Thanks for your attention!

Questions?

