Generalising a result of Shtipel'man

Nikolaas D. Verhulst

TU Dresden

The mathematics lesson with

Dr. Nikolaas Verhulst

TU Dresden

Figure: The anatomy lesson with Dr. Nicolaes Tulp (from Wikipedia)

Shtipel'man's result

Shtipel'man's theorem

Every valuation on $\mathbb{D}_1(k)$ is abelian.

Abelian valuations

Definition

for all x, y in D.

Let *D* be a skewfield and let Γ be a totally ordered group. A valuation is a surjective map $v : D \to \Gamma \cup \{\infty\}$ satisfying: $(\vee 1) \ v(x) = \infty \iff x = 0$ $(\vee 2) \ v(xy) = v(x)v(y)$ $(\vee 3) \ v(x + y) \le \min \{v(x), v(y)\}$

The mathematics lesson with Dr. Nikolaas Verhulst 4 / 14

Abelian valuations

Definition

Let *D* be a skewfield and let Γ be a totally ordered group. A valuation is a surjective map $v : D \to \Gamma \cup \{\infty\}$ satisfying: $(V1) \ v(x) = \infty \iff x = 0$ $(V2) \ v(xy) = v(x)v(y)$ $(V3) \ v(x+y) \le \min \{v(x), v(y)\}$ for all *x*, *y* in *D*.

Definition

A valuation $v : D \to \Gamma$ is called *abelian* if v(xy) = v(yx) for all x, y in D.

Definition

Let k be a field. The first Weyl algebra is defined as $\mathbb{A}_1(k) = k < x, y > /(xy - yx - 1).$

Definition

Let k be a field. The *first Weyl algebra* is defined as $\mathbb{A}_1(k) = k < x, y > /(xy - yx - 1)$.

Ore condition

Let R be a domain and set $S = R \setminus \{0\}$. If $sR \cap rS \neq \emptyset$ for all $r \in R, s \in S$, then R has a skewfield of fractions.

Definition

Let k be a field. The first Weyl algebra is defined as $\mathbb{A}_1(k) = k < x, y > /(xy - yx - 1)$.

Ore condition

Let R be a domain and set $S = R \setminus \{0\}$. If $sR \cap rS \neq \emptyset$ for all $r \in R, s \in S$, then R has a skewfield of fractions.

E.g. s = x, r = y: $yx^2 = (yx)x = (xy - 1)x = x(yx - x)$ is in $sR \cap rS$.

Definition

Let k be a field. The first Weyl algebra is defined as $\mathbb{A}_1(k) = k < x, y > /(xy - yx - 1)$.

Ore condition

Let *R* be a domain and set $S = R \setminus \{0\}$. If $sR \cap rS \neq \emptyset$ for all $r \in R, s \in S$, then *R* has a skewfield of fractions.

E.g.
$$s = x, r = y$$
: $yx^2 = (yx)x = (xy - 1)x = x(yx - x)$ is in $sR \cap rS$.

Definition

Let k be a field. The first Weyl field $\mathbb{D}_1(k)$ is defined as the skewfield of fractions of $\mathbb{A}_1(k)$.

• Take $0 \neq r$ in $\mathbb{A}_1(k)$ and assume v(xr) < v(rx).

- Take $0 \neq r$ in $\mathbb{A}_1(k)$ and assume v(xr) < v(rx).
- Then v([x, r]) = v(xr rx) = v(xr).

- Take $0 \neq r$ in $\mathbb{A}_1(k)$ and assume v(xr) < v(rx).
- Then v([x, r]) = v(xr rx) = v(xr).
- By induction $v([x, -]^n(r)) = v(x^n r)$ for all n.

- Take $0 \neq r$ in $\mathbb{A}_1(k)$ and assume v(xr) < v(rx).
- Then v([x, r]) = v(xr rx) = v(xr).
- By induction $v([x, -]^n(r)) = v(x^n r)$ for all n.

$$\left(\sum_{i,j} \alpha_{ij} x^i y^j\right) x = \sum_{i,j} \alpha_{ij} x^i y^{j-1} (xy-1) = \dots =$$
$$= x \sum_{i,j} \alpha_{ij} x^i y^j - \sum_{i,j} j \alpha_{ij} x^i y^{j-1}$$

so

۲

$$[x,-](r) = rx - xr = -\sum_{i,j} j\alpha_{ij}x^i y^{j-1}$$

- Take $0 \neq r$ in $\mathbb{A}_1(k)$ and assume v(xr) < v(rx).
- Then v([x, r]) = v(xr rx) = v(xr).
- By induction $v([x, -]^n(r)) = v(x^n r)$ for all n.
- [x,-] lowers the y-degree and consequently [x,-]^m(r) = 0 for some m.
- Hence $v(x^m r) = v([x, -]^m(r)) = v(0) = \infty$ but $x^m r \neq 0$.

- Take $0 \neq r$ in $\mathbb{A}_1(k)$ and assume v(xr) < v(rx).
- Then v([x, r]) = v(xr rx) = v(xr).
- By induction $v([x, -]^n(r)) = v(x^n r)$ for all n.
- [x,-] lowers the y-degree and consequently [x,-]^m(r) = 0 for some m.
- Hence $v(x^m r) = v([x, -]^m(r)) = v(0) = \infty$ but $x^m r \neq 0$.
- Therefore, v(x) commutes with $v(\mathbb{A}_1(k))$ and consequently $v(x) \in Z(\Gamma)$.

- Take $0 \neq r$ in $\mathbb{A}_1(k)$ and assume v(xr) < v(rx).
- Then v([x, r]) = v(xr rx) = v(xr).
- By induction $v([x, -]^n(r)) = v(x^n r)$ for all n.
- [x,-] lowers the y-degree and consequently [x,-]^m(r) = 0 for some m.
- Hence $v(x^m r) = v([x, -]^m(r)) = v(0) = \infty$ but $x^m r \neq 0$.
- Therefore, v(x) commutes with $v(\mathbb{A}_1(k))$ and consequently $v(x) \in Z(\Gamma)$.
- The same holds, mutatis mutandis, for any $\chi \in k[x]$.

• Assume $r \in \mathbb{A}_1(k)$ is such that $v(r) \notin Z(\Gamma)$.

- Assume $r \in \mathbb{A}_1(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\operatorname{GKdim}_k(\mathbb{D}_1(k)) = 2$, there are, for any $s \in \mathbb{A}_1(k)$, χ_{ij} in k[x] with $\sum_{i,j} \chi_{ij} r^i s^j = 0$.

- Assume $r \in \mathbb{A}_1(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\operatorname{GKdim}_k(\mathbb{D}_1(k)) = 2$, there are, for any $s \in \mathbb{A}_1(k)$, χ_{ij} in k[x] with $\sum_{i,j} \chi_{ij} r^i s^j = 0$.

•
$$v(\chi_{ij}r^is^j) = v(\chi_{i'j'}r^{i'}s^{j'})$$
 follows.

- Assume $r \in \mathbb{A}_1(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\operatorname{GKdim}_k(\mathbb{D}_1(k)) = 2$, there are, for any $s \in \mathbb{A}_1(k)$, χ_{ij} in k[x] with $\sum_{i,j} \chi_{ij} r^i s^j = 0$.
- $v(\chi_{ij}r^is^j) = v(\chi_{i'j'}r^{i'}s^{j'})$ follows.
- Some power of v(r) commutes with some power of v(s).

- Assume $r \in \mathbb{A}_1(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\operatorname{GKdim}_k(\mathbb{D}_1(k)) = 2$, there are, for any $s \in \mathbb{A}_1(k)$, χ_{ij} in k[x] with $\sum_{i,j} \chi_{ij} r^i s^j = 0$.

•
$$v(\chi_{ij}r^is^j) = v(\chi_{i'j'}r^{i'}s^{j'})$$
 follows.

- Some power of v(r) commutes with some power of v(s).
- v(r) and v(s) commute.

- Assume $r \in \mathbb{A}_1(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\operatorname{GKdim}_k(\mathbb{D}_1(k)) = 2$, there are, for any $s \in \mathbb{A}_1(k)$, χ_{ij} in k[x] with $\sum_{i,j} \chi_{ij} r^i s^j = 0$.

•
$$v(\chi_{ij}r^is^j) = v(\chi_{i'j'}r^{i'}s^{j'})$$
 follows.

- Some power of v(r) commutes with some power of v(s).
- v(r) and v(s) commute.
- $v(r) \in Z(\Gamma)$.

- Assume $r \in \mathbb{A}_1(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\operatorname{GKdim}_k(\mathbb{D}_1(k)) = 2$, there are, for any $s \in \mathbb{A}_1(k)$, χ_{ij} in k[x] with $\sum_{i,j} \chi_{ij} r^i s^j = 0$.

•
$$v(\chi_{ij}r^is^j) = v(\chi_{i'j'}r^{i'}s^{j'})$$
 follows.

- Some power of v(r) commutes with some power of v(s).
- v(r) and v(s) commute.
- $v(r) \in Z(\Gamma)$.
- v is abelian.

- Take $0 \neq r$ in $\mathbb{A}_1(k)$ and assume v(xr) < v(rx).
- Then v([x, r]) = v(xr rx) = v(xr).
- By induction $v([x, -]^n(r)) = v(x^n r)$ for all n.
- [x,-] lowers the y-degree and consequently [x,-]^m(r) = 0 for some m.
- Hence $v(x^m r) = v([x, -]^m(r)) = v(0) = \infty$ but $x^m r \neq 0$.
- Therefore, v(x) commutes with $v(\mathbb{A}_1(k))$ and consequently $v(x) \in Z(\Gamma)$.
- The same holds, mutatis mutandis, for any $\chi \in k[x]$.

- Take $0 \neq r$ in $\mathbb{A}_1(k)$ and assume v(xr) < v(rx).
- Then v([x, r]) = v(xr rx) = v(xr).
- By induction $v([x, -]^n(r)) = v(x^n r)$ for all n.
- [x,-] lowers the y-degree and consequently [x,-]^m(r) = 0 for some m.
- Hence $v(x^m r) = v([x, -]^m(r)) = v(0) = \infty$ but $x^m r \neq 0$.
- Therefore, v(x) commutes with $v(\mathbb{A}_1(k))$ and consequently $v(x) \in Z(\Gamma)$.
- The same holds, mutatis mutandis, for any $\chi \in k[x]$.

- Assume $r \in \mathbb{A}_1(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\operatorname{GKdim}_k(\mathbb{D}_1(k)) = 2$, there are, for any $s \in \mathbb{A}_1(k)$, χ_{ij} in k[x] with $\sum_{i,j} \chi_{ij} r^i s^j = 0$.

•
$$v(\chi_{ij}r^is^j) = v(\chi_{i'j'}r^{i'}s^{j'})$$
 follows.

- Some power of v(r) commutes with some power of v(s).
- v(r) and v(s) commute.
- $v(r) \in Z(\Gamma)$.
- v is abelian.

- Assume $r \in \mathbb{A}_1(k)$ is such that $v(r) \notin Z(\Gamma)$.
- Since $\operatorname{GKdim}_k(\mathbb{D}_1(k)) = 2$, there are, for any $s \in \mathbb{A}_1(k)$, χ_{ij} in k[x] with $\sum_{i,j} \chi_{ij} r^i s^j = 0$.

•
$$v(\chi_{ij}r^is^j) = v(\chi_{i'j'}r^{i'}s^{j'})$$
 follows.

- Some power of v(r) commutes with some power of v(s).
- v(r) and v(s) commute.
- $v(r) \in Z(\Gamma)$.
- v is abelian.

The vital organs

Lemma of the nilpotent Lie-bracket

Let R be a ring with skewfield of fractions D. Let $v : D \to \Gamma \cup \{\infty\}$ be a valuation on D. If $r \in R$ is such that [r, -] is a nilpotent Lie-bracket, then $v(r) \in Z(\Gamma)$.

The vital organs

Lemma of the nilpotent Lie-bracket

Let *R* be a ring with skewfield of fractions *D*. Let $v : D \to \Gamma \cup \{\infty\}$ be a valuation on *D*. If $r \in R$ is such that [r, -] is a nilpotent Lie-bracket, then $v(r) \in Z(\Gamma)$.

One-dimension-for-free lemma

Let $R' \subseteq R$ be rings with skewfields of fractions $D' \subseteq D$ and let $v : D \to \Gamma \cup \{\infty\}$ be a valuation on D. Suppose $v|_{D'}$ is abelian and $\operatorname{GKdim}(R') = \operatorname{GKdim}(R) - 1$. Then v is abelian.

Playing with the organs, part 1

Lemma of the nilpotent Lie-bracket

Let *R* be a ring with skewfield of fractions *D*. Let $v : D \to \Gamma \cup \{\infty\}$ be a valuation on *D*. If $r \in R$ is such that [r, -] is a nilpotent Lie-bracket, then $v(r) \in Z(\Gamma)$.

Playing with the organs, part 1

Lemma of the nilpotent Lie-bracket

Let R be a ring with skewfield of fractions D. Let $v : D \to \Gamma \cup \{\infty\}$ be a valuation on D. If $r \in R$ is such that [r, -] is a nilpotent Lie-bracket, then $v(r) \in Z(\Gamma)$.

Corollary

If R is a domain satisfying the Ore condition and where [x, -] is nilpotent for every $x \in R$, then any valuation on the skewfield of fractions of R is abelian.

Playing with the organs, part 2

GKdim of Ore extensions

Suppose D is a skewfield with a finite dimensional generating subspace V. If σ is a Z(D)-automorphism, δ is a σ -derivation, and $\sigma(V) \subseteq V$ then

 $\operatorname{GKdim}(D[x; \sigma, \delta]) = \operatorname{GKdim}(D) + 1.$

Playing with the organs, part 2

GKdim of Ore extensions

Suppose D is a skewfield with a finite dimensional generating subspace V. If σ is a Z(D)-automorphism, δ is a σ -derivation, and $\sigma(V) \subseteq V$ then

 $\operatorname{GKdim}(D[x; \sigma, \delta]) = \operatorname{GKdim}(D) + 1.$

Corollary

Suppose *D* is a skewfield with a finite dimensional generating subspace *V*. If σ is a Z(D)-automorphism, δ is a σ -derivation, $\sigma(V) \subseteq V$ and all valuations on *D* are abelian, then all valuations on $D[x, \sigma, \delta]$ are abelian.

The following are some examples of such Ore extensions:

The following are some examples of such Ore extensions:

• Higher Weyl-fields, i.e. $\mathbb{D}_n(k)$.

The following are some examples of such Ore extensions:

- Higher Weyl-fields, i.e. $\mathbb{D}_n(k)$.
- Quotient fields of quantum algebras.

The following are some examples of such Ore extensions:

- Higher Weyl-fields, i.e. $\mathbb{D}_n(k)$.
- Quotient fields of quantum algebras.
- Quotient fields of quantum Weyl algebras.

The following are some examples of such Ore extensions:

- Higher Weyl-fields, i.e. $\mathbb{D}_n(k)$.
- Quotient fields of quantum algebras.
- Quotient fields of quantum Weyl algebras.

Hilbert fields are non-examples.

Thanks for your attention!

Questions?