THE "HALF-DEGREE" AND "DEGREE" PRINCIPLES FOR SYMMETRIC FUNCTIONS

VLAD TIMOFTE

1. Notations

Symmetric functions

$\Sigma_{d}^{[n]}$: the \mathbb{R}-algebra of all real symmetric polynomials of degree at most $d \in \mathbb{N}$ on \mathbb{R}^{n}.
$\mathcal{R}_{d}(A)$: the set of all maps defined on $A \subset \mathbb{R}^{n}$ by quotients of polynomials from $\Sigma_{d}^{[n]}$, that is,

$$
\mathcal{R}_{d}(A):=\left\{q: A \rightarrow \mathbb{R} \left\lvert\, q=\frac{f}{g}\right. \text { for some } f, g \in \Sigma_{d}^{[n]}, \text { with } 0 \notin g(A)\right\}
$$

Distinct components of vectors from \mathbb{R}^{n}
For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, set

$$
v(x):=\#\left(\left\{x_{1}, \ldots, x_{n}\right\}\right), \quad v^{*}(x):=\#\left(\left\{x_{1}, \ldots, x_{n}\right\} \backslash\{0\}\right)
$$

For $A \subset \mathbb{R}^{n}$ and $s \in \mathbb{N}^{*}$, set

$$
A(s):=\{x \in A \mid v(x) \leq s\}, \quad A(s)^{*}:=\left\{x \in A \mid v^{*}(x) \leq s\right\} .
$$

Stable sets

For any boolean combination \mathcal{B}_{s} of real symmetric polynomial inequalities of degree at most s on \mathbb{R}^{n}, we may consider the sets

$$
A_{+}:=\left\{x \in \mathbb{R}_{+}^{n} \mid \mathcal{B}_{s}(x) \text { is fulfilled }\right\}, \quad A:=\left\{x \in \mathbb{R}^{n} \mid \mathcal{B}_{s}(x) \text { is fulfilled }\right\}
$$

Let us define

$$
\mathcal{A}_{s}\left(\mathbb{R}_{+}^{n}\right):=\left\{A_{+} \subset \mathbb{R}_{+}^{n} \mid A_{+} \text {as above }\right\}, \quad \mathcal{A}_{s}\left(\mathbb{R}^{n}\right):=\left\{A \subset \mathbb{R}^{n} \mid A \text { as above }\right\}
$$

Stable paths

A path $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ is said to be (s)-stable (or an (s)-path), if and only if

$$
P_{1} \circ \gamma, \ldots, P_{s} \circ \gamma \quad \text { are constant on }[a, b]
$$

(where $P_{k}(x)=x_{1}^{k}+\cdots+x_{n}^{k}$ is the k th symmetric power sum).

The (s)-boundary of an arbitrary set
For $A \subset \mathbb{R}^{n}$ and $s \in \mathbb{N}^{*}$, let

$$
\Gamma_{s}(A):=\left\{\gamma:[0,1] \rightarrow \mathbb{R}^{n} \mid \gamma \text { is an }(s) \text {-path, with } \gamma([0,1[) \subset A\}\right.
$$

We define the (s)-boundary of A by

$$
\partial_{s} A:=\partial A \cap\left\{\gamma(1) \mid \gamma \in \Gamma_{s}(A)\right\}
$$

Roughly speaking, the (s)-boundary is the set of all points at which (s)-paths with initial points in A cross the topological boundary ∂A for the first time.

Minimizer of a real function

For arbitrary $f: X \rightarrow \mathbb{R}$, let

$$
M(f):=\operatorname{minimizer}(f)=\left\{\xi \in X \mid f(\xi)=\min _{x \in X} f(x)\right\}
$$

2. Main Results (Simplified Setting)

The results are of the following type:
If $q: A \rightarrow \mathbb{R}$ is a rational symmetric function, then for some specific "thin" subset $A_{0} \subset A$ we have

$$
q>0 \text { on } A \Longleftrightarrow q>0 \text { on } A_{0}
$$

Theorem 1 (enlargement and reduction). Let a rational function $q \in \mathcal{R}_{2 s+1}(A)$ defined on a set $A \in \mathcal{A}_{s}\left(\mathbb{R}_{+}^{n}\right)$. Assume $M(q) \neq \emptyset$ and choose an absolute minimum point $\xi \in M(q)$.
(i): Assume $\xi \notin A(s)^{*}$. Then there is an (s)-path in $M(q)$ joining ξ to some $\zeta \neq \xi$, with

$$
v^{*}(\zeta)=\#(\operatorname{supp}(\zeta))
$$

(that is, all nonzero components of ζ are pairwise distinct).
(ii): There is an (s)-path in $M(q)$ joining ξ to some $\zeta \in A(s)^{*}$. Hence $M\left(\left.q\right|_{\left.A(s)^{*}\right)} \neq \emptyset\right.$ and

$$
\min _{x \in A} q(x)=\min _{x \in A(s)^{*}} q(x)
$$

Theorem 2 (the "half-degree" principle). Let a rational function $q \in \mathcal{R}_{2 s+1}(A)$ defined on a set $A \in \mathcal{A}_{s}\left(\mathbb{R}_{+}^{n}\right) \cup \mathcal{A}_{s}\left(\mathbb{R}^{n}\right)$.
(a): If $A \in \mathcal{A}_{s}\left(\mathbb{R}_{+}^{n}\right)$, we have the equivalences

$$
\begin{aligned}
& q \geq 0 \text { on } A \Longleftrightarrow q \geq 0 \text { on } A(s)^{*} \\
& q>0 \text { on } A \Longleftrightarrow q>0 \text { on } A(s)^{*} .
\end{aligned}
$$

In particular, we have the equality $M\left(\left.q\right|_{\left.A(s)^{*}\right)}=M(q) \cap A(s)^{*}\right.$ and the equivalence

$$
M(q) \neq \emptyset \Longleftrightarrow M\left(\left.q\right|_{A(s)^{*}}\right) \neq \emptyset .
$$

(b): Assume ${ }^{1} s \geq 2$. If $A \in \mathcal{A}_{s}\left(\mathbb{R}^{n}\right)$, we have the equivalences

$$
\begin{aligned}
& q \geq 0 \text { on } A \Longleftrightarrow q \geq 0 \text { on } A(s), \\
& q>0 \text { on } A \Longleftrightarrow q>0 \text { on } A(s) .
\end{aligned}
$$

In particular, we have the equality $M\left(\left.q\right|_{A(s)}\right)=M(q) \cap A(s)$ and the equivalence

$$
M(q) \neq \emptyset \Longleftrightarrow M\left(\left.q\right|_{A(s)}\right) \neq \emptyset
$$

Corollary 3 (symmetric polynomial inequalities). For $s \in \mathbb{N}^{*}$, let a symmetric polynomial inequality of degree at most $2 s+1$ on \mathbb{R}^{n}.
(a): The inequality holds on $A \in \mathcal{A}_{s}\left(\mathbb{R}_{+}^{n}\right)$, if and only if it holds on $A(s)^{*}$.
(b): Assume $s \geq 2$. The inequality holds on $A \in \mathcal{A}_{s}\left(\mathbb{R}^{n}\right)$, if and only if it holds on $A(s)$.

Corollary 4 (level sets and zeros). Let $f \in \Sigma_{2 s+1}^{[n]}$, with $s \in \mathbb{N}^{*}$. Then

$$
\begin{aligned}
& f\left(\mathbb{R}_{+}^{n}\right)=f\left(\mathbb{R}_{+}^{n}(s)^{*}\right) \\
& f\left(\mathbb{R}^{n}\right)=f\left(\mathbb{R}^{n}(s)\right) \quad \text { for } s \geq 2
\end{aligned}
$$

In particular if f has a zero, then it also has a zero with at most $\frac{\operatorname{deg} f}{2} \vee 2$ distinct components. If f has a zero in \mathbb{R}_{+}^{n}, then it has such a zero with at most $\frac{\operatorname{deg} f}{2} \vee 1$ distinct nonzero components.

Theorem 5 (the "degree" principle for stable sets). Let $A \in \mathcal{A}_{d}\left(\mathbb{R}_{+}^{n}\right) \cup \mathcal{A}_{d}\left(\mathbb{R}^{n}\right)$.
(i): We have $q(A)=q(A(d))$ for every rational function $q \in \mathcal{R}_{d}(A)$.
(ii): If \mathcal{B}_{d} is a boolean combination of real symmetric polynomial inequalities of degree at most d on \mathbb{R}^{n}, then

$$
\mathcal{B}_{d} \text { holds on } A \Longleftrightarrow \mathcal{B}_{d} \text { holds on } A(d) .
$$

Theorem 6 (the "degree" principle for arbitrary sets). Let $A \subset \mathbb{R}^{n}$ and $d \in \mathbb{N}^{*}$.
(i): We have ${ }^{2} q(A)=q(A(d)) \cup q\left(\partial_{d} A\right)$ for every rational function $q \in \mathcal{R}_{d}(A)$.
(ii): If \mathcal{B}_{d} is a boolean combination of real symmetric polynomial inequalities of degree at most d on \mathbb{R}^{n}, then

$$
\mathcal{B}_{d} \text { holds on } A \Longleftrightarrow \mathcal{B}_{d} \text { holds on } A(d) \cup \partial_{d} A
$$

[^0]
[^0]: ${ }^{1}$ For $s=1$ the statement is false (take $A=P_{1}^{-1}(\{1\}) \in \mathcal{A}_{1}\left(\mathbb{R}^{n}\right)$ and the polynomials $f=2 P_{1}^{2}-3 P_{2}$ and $g=1$).
 ${ }^{2}$ Any rational function $q \in \mathcal{R}_{d}(A)$ extends uniquely to $q \in \mathcal{R}_{d}\left(A \cup \partial_{d} A\right)$.

