
THE “HALF-DEGREE” AND “DEGREE” PRINCIPLES
FOR SYMMETRIC FUNCTIONS

VLAD TIMOFTE

1. Notations

Symmetric functions
Σ[n]

d : the R-algebra of all real symmetric polynomials of degree at most d ∈ N on Rn.

Rd(A) : the set of all maps defined on A ⊂ Rn by quotients of polynomials from Σ[n]
d , that is,

Rd(A) :=
{

q : A → R
∣∣∣ q = f

g for some f, g ∈ Σ[n]
d , with 0 /∈ g(A)

}
.

Distinct components of vectors from Rn

For x = (x1, . . . , xn) ∈ Rn, set

v(x) := #({x1, . . . , xn}), v∗(x) := #({x1, . . . , xn} \ {0}).
For A ⊂ Rn and s ∈ N∗, set

A(s) := {x ∈ A | v(x) ≤ s}, A(s)∗ := {x ∈ A | v∗(x) ≤ s}.

Stable sets
For any boolean combination Bs of real symmetric polynomial inequalities of degree at most s on
Rn, we may consider the sets

A+ := {x ∈ Rn
+ | Bs(x) is fulfilled}, A := {x ∈ Rn | Bs(x) is fulfilled}.

Let us define

As(Rn
+) := {A+ ⊂ Rn

+ |A+ as above}, As(Rn) := {A ⊂ Rn |A as above}.

Stable paths
A path γ : [a, b] → Rn is said to be (s)-stable (or an (s)-path), if and only if

P1 ◦ γ, . . . , Ps ◦ γ are constant on [a, b]

(where Pk(x) = xk
1 + · · ·+ xk

n is the kth symmetric power sum).

The (s)-boundary of an arbitrary set
For A ⊂ Rn and s ∈ N∗, let

Γs(A) := {γ : [0, 1] → Rn | γ is an (s)-path, with γ([0, 1[) ⊂ A}.
We define the (s)-boundary of A by

∂sA := ∂A ∩ {γ(1) | γ ∈ Γs(A)}.
Roughly speaking, the (s)-boundary is the set of all points at which (s)-paths with initial points in A
cross the topological boundary ∂A for the first time.

Minimizer of a real function
For arbitrary f : X → R, let

M (f) := minimizer(f) =
{

ξ ∈ X

∣∣∣∣ f(ξ) = min
x∈X

f(x)
}

.
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2. Main results (simplified setting)

The results are of the following type:

If q : A → R is a rational symmetric function, then for some specific “thin” subset A0 ⊂ A we have

q > 0 on A ⇐⇒ q > 0 on A0.

Theorem 1 (enlargement and reduction). Let a rational function q ∈ R2s+1(A) defined on a
set A ∈ As(Rn

+). Assume M (q) 6= ∅ and choose an absolute minimum point ξ ∈ M (q).
(i): Assume ξ /∈ A(s)∗. Then there is an (s)-path in M (q) joining ξ to some ζ 6= ξ, with

v∗(ζ) = #(supp(ζ))

(that is, all nonzero components of ζ are pairwise distinct).
(ii): There is an (s)-path in M (q) joining ξ to some ζ ∈ A(s)∗. Hence M (q|A(s)∗) 6= ∅ and

min
x∈A

q(x) = min
x∈A(s)∗

q(x).

Theorem 2 (the “half-degree” principle). Let a rational function q ∈ R2s+1(A) defined on a
set A ∈ As(Rn

+) ∪As(Rn).
(a): If A ∈ As(Rn

+), we have the equivalences

q ≥ 0 on A ⇐⇒ q ≥ 0 on A(s)∗,
q > 0 on A ⇐⇒ q > 0 on A(s)∗.

In particular, we have the equality M (q|A(s)∗) = M (q) ∩ A(s)∗ and the equivalence

M (q) 6= ∅ ⇐⇒ M (q|A(s)∗) 6= ∅.

(b): Assume1 s ≥ 2. If A ∈ As(Rn), we have the equivalences

q ≥ 0 on A ⇐⇒ q ≥ 0 on A(s),
q > 0 on A ⇐⇒ q > 0 on A(s).

In particular, we have the equality M (q|A(s)) = M (q) ∩ A(s) and the equivalence

M (q) 6= ∅ ⇐⇒ M (q|A(s)) 6= ∅.

Corollary 3 (symmetric polynomial inequalities). For s ∈ N∗, let a symmetric polynomial
inequality of degree at most 2s + 1 on Rn.

(a): The inequality holds on A ∈ As(Rn
+), if and only if it holds on A(s)∗.

(b): Assume s ≥ 2. The inequality holds on A ∈ As(Rn), if and only if it holds on A(s).

Corollary 4 (level sets and zeros). Let f ∈ Σ[n]
2s+1, with s ∈ N∗. Then

f(Rn
+) = f(Rn

+(s)∗),

f(Rn) = f(Rn(s)) for s ≥ 2.

In particular if f has a zero, then it also has a zero with at most deg f
2 ∨ 2 distinct components. If f

has a zero in Rn
+, then it has such a zero with at most deg f

2 ∨ 1 distinct nonzero components.

Theorem 5 (the “degree” principle for stable sets). Let A ∈ Ad(Rn
+) ∪Ad(Rn).

(i): We have q(A) = q(A(d)) for every rational function q ∈ Rd(A).
(ii): If Bd is a boolean combination of real symmetric polynomial inequalities of degree at most

d on Rn, then
Bd holds on A ⇐⇒ Bd holds on A(d).

Theorem 6 (the “degree” principle for arbitrary sets). Let A ⊂ Rn and d ∈ N∗.
(i): We have2 q(A) = q(A(d)) ∪ q(∂dA) for every rational function q ∈ Rd(A).
(ii): If Bd is a boolean combination of real symmetric polynomial inequalities of degree at most

d on Rn, then
Bd holds on A ⇐⇒ Bd holds on A(d) ∪ ∂dA.

1For s = 1 the statement is false (take A = P−1
1 ({1}) ∈ A1(Rn) and the polynomials f = 2P 2

1 − 3P2 and g = 1).
2Any rational function q ∈ Rd(A) extends uniquely to q ∈ Rd(A ∪ ∂dA).


