THE "HALF-DEGREE" AND "DEGREE" PRINCIPLES FOR SYMMETRIC FUNCTIONS

VLAD TIMOFTE

1. NOTATIONS

Symmetric functions

 $\Sigma_d^{[n]}$: the \mathbb{R} -algebra of all real symmetric polynomials of degree at most $d \in \mathbb{N}$ on \mathbb{R}^n . $\mathcal{R}_d(A)$: the set of all maps defined on $A \subset \mathbb{R}^n$ by quotients of polynomials from $\Sigma_d^{[n]}$, that is,

$$\mathcal{R}_d(A) := \left\{ q : A \to \mathbb{R} \mid q = \frac{f}{g} \text{ for some } f, g \in \Sigma_d^{[n]}, \text{ with } 0 \notin g(A) \right\}.$$

Distinct components of vectors from \mathbb{R}^n

For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, set $v(x) := \#(\{x_1, \dots, x_n\}), \qquad v^*(x) := \#(\{x_1, \dots, x_n\} \setminus \{0\}).$ For $A \subset \mathbb{R}^n$ and $s \in \mathbb{N}^*$, set $A(s) := \{ x \in A \mid v(x) \le s \}, \qquad A(s)^* := \{ x \in A \mid v^*(x) < s \}.$

$$A(s) := \{ x \in A \mid v(x) \le s \}, \qquad A(s)^* := \{ x \in A \mid v^*(x) \le s \}$$

Stable sets

For any boolean combination \mathcal{B}_s of real symmetric polynomial inequalities of degree at most s on \mathbb{R}^n , we may consider the sets

$$A_{+} := \{ x \in \mathbb{R}^{n}_{+} | \mathcal{B}_{s}(x) \text{ is fulfilled} \}, \qquad A := \{ x \in \mathbb{R}^{n} | \mathcal{B}_{s}(x) \text{ is fulfilled} \}.$$

Let us define

$$\mathcal{A}_s(\mathbb{R}^n_+) := \{ A_+ \subset \mathbb{R}^n_+ \, | \, A_+ \text{ as above} \}, \qquad \mathcal{A}_s(\mathbb{R}^n) := \{ A \subset \mathbb{R}^n \, | \, A \text{ as above} \}$$

Stable paths

A path $\gamma: [a, b] \to \mathbb{R}^n$ is said to be (s)-stable (or an (s)-path), if and only if

 $P_1 \circ \gamma, \dots, P_s \circ \gamma$ are constant on [a, b]

(where $P_k(x) = x_1^k + \dots + x_n^k$ is the *k*th symmetric power sum).

The (s)-boundary of an arbitrary set

For $A \subset \mathbb{R}^n$ and $s \in \mathbb{N}^*$, let

$$\Gamma_s(A) := \{\gamma : [0,1] \to \mathbb{R}^n \mid \gamma \text{ is an } (s)\text{-path, with } \gamma([0,1[) \subset A\}.$$

We define the (s)-boundary of A by

$$\partial_s A := \partial A \cap \{\gamma(1) \mid \gamma \in \Gamma_s(A)\}.$$

Roughly speaking, the (s)-boundary is the set of all points at which (s)-paths with initial points in A cross the topological boundary ∂A for the first time.

Minimizer of a real function

For arbitrary $f: X \to \mathbb{R}$, let

$$M(f) := \min(f) = \left\{ \xi \in X \mid f(\xi) = \min_{x \in X} f(x) \right\}.$$

2. MAIN RESULTS (SIMPLIFIED SETTING)

The results are of the following type:

If $q: A \to \mathbb{R}$ is a rational symmetric function, then for some specific "thin" subset $A_0 \subset A$ we have q > 0 on $A \iff q > 0$ on A_0 .

Theorem 1 (enlargement and reduction). Let a rational function $q \in \mathcal{R}_{2s+1}(A)$ defined on a set $A \in \mathcal{A}_s(\mathbb{R}^n_+)$. Assume $M(q) \neq \emptyset$ and choose an absolute minimum point $\xi \in M(q)$.

(i): Assume $\xi \notin A(s)^*$. Then there is an (s)-path in M(q) joining ξ to some $\zeta \neq \xi$, with

 $v^*(\zeta) = \#(\operatorname{supp}(\zeta))$

(that is, all nonzero components of ζ are pairwise distinct).

(ii): There is an (s)-path in M(q) joining ξ to some $\zeta \in A(s)^*$. Hence $M(q|_{A(s)^*}) \neq \emptyset$ and

$$\min_{x \in A} q(x) = \min_{x \in A(s)^*} q(x).$$

Theorem 2 (the "half-degree" principle). Let a rational function $q \in \mathcal{R}_{2s+1}(A)$ defined on a set $A \in \mathcal{A}_s(\mathbb{R}^n_+) \cup \mathcal{A}_s(\mathbb{R}^n)$.

(a): If $A \in \mathcal{A}_s(\mathbb{R}^n_+)$, we have the equivalences

 $q \ge 0 \text{ on } A \iff q \ge 0 \text{ on } A(s)^*,$ $q > 0 \text{ on } A \iff q > 0 \text{ on } A(s)^*.$

In particular, we have the equality $M(q|_{A(s)^*}) = M(q) \cap A(s)^*$ and the equivalence

$$M(q) \neq \emptyset \iff M(q|_{A(s)^*}) \neq \emptyset.$$

(b): Assume¹ $s \geq 2$. If $A \in \mathcal{A}_s(\mathbb{R}^n)$, we have the equivalences

 $q\geq 0 \ on \ A \iff q\geq 0 \ on \ A(s),$

$$q > 0 \text{ on } A \iff q > 0 \text{ on } A(s)$$

In particular, we have the equality $M(q|_{A(s)}) = M(q) \cap A(s)$ and the equivalence

 $M(q) \neq \emptyset \iff M(q|_{A(s)}) \neq \emptyset.$

Corollary 3 (symmetric polynomial inequalities). For $s \in \mathbb{N}^*$, let a symmetric polynomial inequality of degree at most 2s + 1 on \mathbb{R}^n .

(a): The inequality holds on $A \in \mathcal{A}_s(\mathbb{R}^n_+)$, if and only if it holds on $A(s)^*$.

(b): Assume $s \ge 2$. The inequality holds on $A \in \mathcal{A}_s(\mathbb{R}^n)$, if and only if it holds on A(s).

Corollary 4 (level sets and zeros). Let $f \in \Sigma_{2s+1}^{[n]}$, with $s \in \mathbb{N}^*$. Then

$$f(\mathbb{R}^n_+) = f(\mathbb{R}^n_+(s)^*),$$

$$f(\mathbb{R}^n) = f(\mathbb{R}^n(s)) \quad for \ s \ge 2.$$

In particular if f has a zero, then it also has a zero with at most $\frac{\deg f}{2} \vee 2$ distinct components. If f has a zero in \mathbb{R}^n_+ , then it has such a zero with at most $\frac{\deg f}{2} \vee 1$ distinct nonzero components.

Theorem 5 (the "degree" principle for stable sets). Let $A \in \mathcal{A}_d(\mathbb{R}^n_+) \cup \mathcal{A}_d(\mathbb{R}^n)$.

- (i): We have q(A) = q(A(d)) for every rational function $q \in \mathcal{R}_d(A)$.
 - (ii): If B_d is a boolean combination of real symmetric polynomial inequalities of degree at most d on Rⁿ, then

$$\mathcal{B}_d$$
 holds on $A \iff \mathcal{B}_d$ holds on $A(d)$.

Theorem 6 (the "degree" principle for arbitrary sets). Let $A \subset \mathbb{R}^n$ and $d \in \mathbb{N}^*$.

(i): We have² $q(A) = q(A(d)) \cup q(\partial_d A)$ for every rational function $q \in \mathcal{R}_d(A)$.

(ii): If \mathcal{B}_d is a boolean combination of real symmetric polynomial inequalities of degree at most d on \mathbb{R}^n , then

 \mathcal{B}_d holds on $A \iff \mathcal{B}_d$ holds on $A(d) \cup \partial_d A$.

¹For s = 1 the statement is false (take $A = P_1^{-1}(\{1\}) \in \mathcal{A}_1(\mathbb{R}^n)$ and the polynomials $f = 2P_1^2 - 3P_2$ and g = 1). ²Any rational function $q \in \mathcal{R}_d(A)$ extends uniquely to $q \in \mathcal{R}_d(A \cup \partial_d A)$.