CORRECTION TO THE PAPER "THE MOMENT PROBLEM FOR NON-COMPACT SEMIALGEBRAIC SETS"

VICTORIA POWERS AND CLAUS SCHEIDERER

Examples 3.14 (page 86): The hypotheses of Examples 4 and 5 need adjustment, as follows:

Example 4: The assertion for $n \leq 2$ is true. Also, for odd $n \geq 3$, the assertion is true, since in this case the curve C has exactly one point at infinity, which is real. If $n \geq 4$ is even (and C is real), there are two points at infinity which are both real. Therefore, the moment problem for K is not finitely solvable if K is unbounded on two half-branches of $C(\mathbb{R})$ at infinity which represent different points at infinity. Otherwise, the moment problem for K is finitely solvable.

More concretely, this means the following for $n \geq 4$. Let $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ be the four quadrants of the real plane (numbered counter-clockwise in the usual way). If $n \equiv 0(\bmod 4)$, the moment problem for K is finitely solvable iff at least one of

$$
K \cap\left(Q_{1} \cup Q_{2}\right), \quad K \cap\left(Q_{3} \cup Q_{4}\right)
$$

is bounded. If $n \equiv 2(\bmod 4)$, the moment problem for K is finitely solvable iff at least one of

$$
K \cap\left(Q_{1} \cup Q_{3}\right), \quad K \cap\left(Q_{2} \cup Q_{4}\right)
$$

is bounded.
Example 5: For general $f(x, y)$ as in the example, C can have more than one point at infinity, and some of these points can be non-real. Therefore, if an unbounded closed semialgebraic set $K \subset C(\mathbb{R})$ is given, and one wants to conclude that the moment problem for K is not finitely solvable, one has to add conditions which imply that all points of C at infinity are real, and lie in the projective closure of K. For example, it is enough to assume that the monomial y^{n-1} occurs in $f(x, y)$, since then the projective closure of C in \mathbb{P}^{2} is regular and has exactly one point on the line at infinity, which is real.

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

E-mail address: vicki@mathcs.emory.edu
Fakultät für Mathematik, Universität Duisburg, 47048 Duisburg, Germany
E-mail address: claus@math.uni-duisburg.de

