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Let f = f(x1, . . . , xn) be a polynomial with rational coefficients which is a sum
of squares (sos) of polynomials with real coefficients. Sturmfels asked whether f
is necessarily a sum of squares of polynomials with rational coefficients. From the
assumption it follows easily that f is a sum of squares of polynomials with real
algebraic coefficients. Hence there exists a real number field K such that f is sos
in K[x1, . . . , xn].

In [1], Hillar showed that the answer to Sturmfels’s question is positive if the
real number field K can be chosen to be Galois over Q. Moreover, he provided
bounds for the number of squares needed to write f over Q, in terms of the number
of squares needed over K and the degree [K : Q]. In fact, the polynomial ring
Q[x1, . . . , xn] could be replaced for these results by any commutative Q-algebra A
(and accordingly K[x1, . . . , xn] by A⊗Q K).

The purpose of this note is to give a very short proof of a generalization of this
result. This proof yields a significantly smaller bound for the number of squares
necessary to express f as a sum of squares over Q. While in [1] this bound is
exponential in the degree [K : Q], our bound is linear.

We prefer to work over an arbitrary real base field k, since there is no difference
in the proof.

Given a finite extension K/k of real fields, consider the associated trace quadratic
form. This is the quadratic form

τ : K → k, y 7→ trK/k(y2)

over k. It has the following well-known basic property: For any ordering P of k, the
Sylvester signature of τ at P is equal to the number of extensions of the ordering
P to K. See [2] (Lemma 3.2.7 or Theorem 3.4.5), for example.

For any commutative ring A denote by ΣA2 the set of sums of squares of A.
Assume that every ordering of k has d := [K : k] different extensions to K. (It is
easy to see that this is equivalent to the condition that every ordering of k extends
to the Galois hull of K/k.) Then τ is positive definite with respect to every ordering
of k. Diagonalizing τ therefore gives a1, . . . , ad ∈ Σk2, together with a k-linear basis
y1, . . . , yd of K, such that

trK/k

(( d∑
i=1

xiyi

)2)
=

d∑
i=1

aix
2
i (1)

holds for all x1, . . . , xd ∈ k. More generally, if A is an arbitrary (commutative)
k-Algebra and AK := A⊗k K, then

trAK/A

(( d∑
i=1

xi ⊗ yi

)2)
=

d∑
i=1

aix
2
i (2)

holds for all x1, . . . , xn ∈ A.
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Proposition 1. Let K/k be an extension of real fields of finite degree d = [K : k],
and assume that every ordering of k extends to d different orderings of K. Then
there exist c1, . . . , cd ∈ Σk2 with the following property:

For every k-algebra A and every f ∈ A which is a sum of m squares in AK =
A⊗kK, there are f1, . . . , fd ∈ A such that each fi is a sum of m squares in A, and
such that

f =
d∑

i=1

cifi.

In particular, f is a sum of dm · p(k) squares in A.

Here p(k) denotes the Pythagoras number of k, i. e., the smallest number p such
that every sum of squares in k is a sum of p squares in k. (If no such number p
exists one puts p(k) =∞.)

Proof. Choose ai ∈ Σk2 and yi ∈ K (i = 1, . . . , d) as before. It suffices to take
ci = ai

d for i = 1, . . . , d. Indeed, assuming f = g2
1 + · · ·+ g2

m with g1, . . . , gm ∈ AK ,
we get

df = trAK/A(f) =
m∑

j=1

trAK/A(g2
j ) =

m∑
j=1

d∑
i=1

aix
2
ij ,

where the xij ∈ A are determined by gj =
∑d

i=1 xij ⊗ yi (j = 1, . . . ,m). So we can
put fi =

∑m
j=1 x

2
ij (i = 1, . . . , d). �

Remark. In [1] it was shown (for k = Q) that if K/Q is a totally real number field
with Galois hull L/Q, if A is a Q-algebra and f ∈ A is a sum of m squares in
A⊗Q K, then f is a sum of

4m · 2e+1

(
e+ 1

2

)
= 2e+2e(e+ 1) ·m

squares in A, with e := [L : Q].

The qualitative part of the above result extends immediately to the following
more general situation. Let K/k be an extension as in the proposition, and let A
be a k-algebra. Fix elements h1, . . . , hr ∈ A and consider the so-called (pseudo-)
quadratic module

M :=
{ r∑

i=1

sihi : s1, . . . , sr ∈ ΣA2
}

generated by the hi. Similarly, let

MK =
{ r∑

i=1

tihi : t1, . . . , tr ∈ ΣA2
K

}
be the (pseudo-) quadratic module generated by M in AK . Then we have:

Proposition 2. A ∩MK = M . �
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