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Abstract. Given two positive definite forms f, g ∈ R[x0, . . . , xn], we prove

that fgN is a sum of squares of forms, for all sufficiently large N ≥ 0. We
generalize this result to projective R-varieties X as follows. Suppose that X is

reduced without one-dimensional irreducible components, and X(R) is Zariski

dense in X. Given everywhere positive global sections f of L⊗2 and g of
M⊗2, where L, M are invertible sheaves on X and M is ample, fgN is a sum

of squares of sections of L⊗M⊗N for all large N ≥ 0. In fact we prove a much
more general version with semi-algebraic constraints, defined by sections of

invertible sheaves. For nonsingular curves and surfaces and sufficiently regular

constraints, the result remains true even if f is just nonnegative. The main
tools are local-global principles for sums of squares, and on the other hand an

existence theorem for totally real global sections of invertible sheaves, which

is the second main result of this paper. For this theorem, X may be quasi-
projective, but again should not have curve components. In fact, this result is

false for curves in general.

Introduction

Let f ∈ R[x0, . . . , xn] be a positive definite homogeneous polynomial. From
Stengle’s Positivstellensatz it follows that f can be written as a sum of squares
of quotients of forms with positive definite denominators. In 1995, Reznick [10]
refined this observation by proving that one can always find such a representation
where the denominators are powers of the form g = x2

0 + · · ·+ x2
n. In other words,

there exists an integer N ≥ 0 such that the form fgN is a sum of squares of forms.
It was observed by the author ([15] 2.1.8) that Reznick’s theorem can be seen as a
direct consequence of Schmüdgen’s Positivstellensatz [17]. As remarked in [15], this
argument works in greater generality and shows, for any two non-constant positive
definite forms f and g with deg(g) | deg(f), that fg2N is a sum of squares of forms
for sufficiently large N ≥ 0.

The present work resulted from an attempt to remove the degree restriction
in this statement. Before we outline the results of this paper, we briefly sketch
how this can be achieved. By replacing f with f1 = fl2k for suitable k ≥ 0 and
some linear form l, one satisfies the degree condition but looses strict positivity.
As a consequence, Schmüdgen’s theorem cannot be applied any more. Instead one
uses the local-global criterion for sums of squares [14], combined with the fact that
strictly positive elements in local rings are sums of squares [13], to get a sum of
squares representation for f1g2N and some N ≥ 0. By an elementary argument,
any summand in such a representation is divisible by l2k. So one can cancel this
factor and gets a representation of fg2N as desired.

To find the proper setting for generalizing this proof, one first observes that the
result is genuinely projective, and not affine, in nature. Leaving technical details
aside for the moment, it is quite clear what a conjectural generalization to projective
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R-varieties X and everywhere positive sections of line bundles should be. Analyzing
the proof just outlined for X = Pn, one sees that the least obvious step in proving
such a generalization is to find a suitable substitute for the linear form l. This leads
to a question of its own interest, namely totally real divisors on R-varieties.

There are two main results in this paper. The first is an existence theorem for
totally real (Cartier) divisors on quasi-projective real varieties, proved in Sect. 3.
More specifically, if X is a reduced quasi-projective R-scheme without one-dimen-
sional irreducible component and with X(R) Zariski dense in X, and if D is a divisor
on X, then for any ample divisor E and any sufficiently large integer n there exists
a totally real (reduced) effective divisor that is linearly equivalent to D+nE. Here
we call an effective divisor D totally real if the R-points of (the closed subscheme) D
are Zariski dense in supp(D). In fact we prove a more general version of this result
which is relative to any Zariski dense semi-algebraic subset S of X(R) (Theorem
3.5). The proof is based on Bertini’s first theorem. As a corollary we obtain that
any divisor on X is equivalent to a difference of two totally real (reduced) effective
divisors, and even to a single such divisor when X is affine; again we provide a more
general version relative to a semi-algebraic set S. For projective curves, Theorem
3.5 and its corollaries fail in general, see the discussion starting in 3.10. The result
can be saved for nonsingular curves under stronger assumptions on S.

The second main result is a general Positivstellensatz for reduced projective R-
schemes X (Theorem 4.1), proved in Sect. 4. Basically it says that a strictly positive
global section f of an invertible sheaf L⊗2 becomes a sum of squares after multi-
plication with a sufficiently high even power of any nowhere (on X(R)) vanishing
section of any ample invertible sheaf. The substitute in the proof for the linear
form l above is a totally real section of a suitable invertible sheaf. The existence
of such a section is guaranteed by Theorem 3.5. We have to assume that X has
no one-dimensional irreducible component since 3.5 is known to fail for curves. We
do not know if the dimension restriction for the irreducible components of X can
be removed in Theorem 4.1. Again, the version we prove is considerably more gen-
eral, and is a preordering-type statement relative to semi-algebraic constraints. For
nonsingular curves and surfaces we can even prove a Nichtnegativstellensatz (f is
allowed to have zeros), as long as the constraints are sufficiently regular.

As a very particular concrete application it follows from Theorem 4.1 that, for
any strictly positive form f ∈ R[x0, . . . , xn], there exists some odd power f2m+1

that is a sum of squares (Corollary 4.7). Our Positivstellensatz (in the version for
Pn) was recently applied by Ahmadi and Parrilo [1] to time continuous dynamical
systems.

In Sect. 2 we introduce the concept of totally real divisors and its generalization
relative to a semi-algebraic set, the weakly compatible divisors. Moreover we define
the sign of a section of an invertible sheaf L⊗2 at a real point, and we discuss basic
properties of these notions that are used later.

For proving (and even formulating) the results of this paper, it is necessary to
use the language of schemes, although some particular cases can be phrased in a
more naive language. In a few places we also have to work with the real spectrum.
A brief discussion of the concepts used is given in a first section with preliminaries.

1. Notations and preliminaries

1.1. Let k be a field and X a k-scheme of finite type. For any k-algebra E we write
X(E) = Homk(SpecE,X) for the set of E-valued points of X. We often confuse an
element of X(k) with its closed image point in X. By Xreg we denote the regular
locus of X, i.e. the set of x ∈ X for which the local ring OX,x is regular; this is an
open subset of X.
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1.2. A general reference for semi-algebraic sets and the real spectrum is [3]. The
real spectrum of the ring A is denoted Sper(A). Let R be a real closed field, and
let X be a separated R-scheme of finite type. A subset S of X(R) is semi-algebraic
if S ∩ U(R) is a semi-algebraic subset of U(R) for every open affine subset U of
X. From the order topology of R we get a topology on X(R) that is sometimes
referred to as the euclidean topology (as opposed to the Zariski topology on X). If
X is affine, then X(R) is in the natural way a topological subspace of SperR[X].
With each semi-algebraic subset S of X(R) one associates a constructible subset S̃
of SperR[X], in such a way that S = X(R) ∩ S̃; in fact, S̃ is defined by the same
system of inequalities inside SperR[X] as S inside X(R). It is well-known that S̃ is
open (resp. closed) in SperR[X] if (and only if) the same is true for S in X(R). It
would be natural to extend the construction of the real spectrum and of the tilde
operator to non-affine X, but this is not needed here.

Let R be a real closed field. The following is a well-known consequence of the
Artin-Lang theorem. For lack of a suitable reference we give a short indication of
the proof.

Proposition 1.3. Let X be an integral R-scheme of finite type, and let S ⊆ X(R)
be a semi-algebraic subset. Then S is Zariski dense in X if and only if S contains
a non-empty (euclidean) open subset of Xreg(R).

Proof. One easily reduces to showing: If X is affine and nonsingular, then for any
0 6= g ∈ R[X], the zero set of g in X(R) has empty interior. To prove this, assume
that f1, . . . , fr ∈ R[X] are such that U := {ξ ∈ X(R) : fi(ξ) > 0, i = 1, . . . , r} is
nonempty and g ≡ 0 on U . The function field R(X) of X has an ordering α which
makes f1, . . . , fr positive. By the (refined) Artin-Lang theorem (see for instance [2]
Thm. 1.3), there exists ξ ∈ U with sgnα(g) = sgn g(ξ), and in particular, g(ξ) 6= 0,
contradiction. �

Corollary 1.4. For an integral R-scheme X of finite type, X(R) is Zariski dense
in X if and only if X has a nonsingular R-point, if and only if the function field
R(X) of X is real, i.e. can be ordered.

Proof. The equivalence Xreg(R) 6= ∅ ⇔ R(X) real is proved in [2]. �

2. Divisors and invertible sheaves

In this section let R be a real closed field, and let alwaysX be a reduced separated
R-scheme of finite type.

2.1. By a divisor on X we always mean a Cartier divisor. An effective Cartier
divisor on X is the same as a closed subscheme D of X whose sheaf of ideals is
everywhere locally generated by one element that is not a zero divisor. The support
supp(D) of D is the closed subset of X underlying D.

Let D be an effective divisor on X, and let S ⊆ X(R) be a semi-algebraic set.
We say that D is weakly compatible with S if S ∩D(R) is Zariski dense in supp(D).
We call D totally real if D is weakly compatible with S = X(R).

Remark 2.2. In [8], the notion of compatibility between a semi-algebraic set S ⊆
X(R) and a prime Weil divisor Y on X was introduced (in the case where X is
normal). The notion from [8] is stronger (at least when S is closed) than weak
compatibility as defined in 2.1, which explains our choice of terminology here. The
existence results for weakly compatible sections proved in Sect. 3 below remain
true for the stronger notion of compatibility (suitably adapted to the more general
situation when X is not normal). However, that notion is more technical and is not
needed here, which is why we work with the easier concept of weak compatibility.
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2.3. Let L be an invertible sheaf (locally free OX -module of rank one) on X. Given
a global section s of L, let Z(s) be the closed zero subscheme of s. The section
s is said to be regular if Z(s) is an effective divisor on X. Since X is reduced,
it is equivalent that supp(s) does not contain any irreducible component of X. A
regular section s of L is called reduced if the closed subscheme Z(s) of X is reduced.
We say that the regular section s is weakly compatible with S if the effective divisor
Z(s) is weakly compatible with S, c.f. Definition 2.1. Again, we call s totally real
if s is weakly compatible with S = X(R).

If L, M are invertible sheaves and s resp. t are global sections of L resp. M , we
denote by st the product s⊗ t, seen as a global section of L⊗M .

2.4. Let L, L′ be invertible sheaves on X, and let φ : L⊗L ∼→ L′ be an isomorphism.
Fixing φ, we can talk of the sign of global (or local) sections of L′ at points ξ ∈ X(R).
Namely, given f ∈ H0(X,L′) and ξ ∈ X(R), the sign of f at ξ (with respect to φ)
is defined as

sgnξ,φ(f) := sgnξ(a) ∈ {−1, 0, 1},
where U ⊆ X is an open set with ξ ∈ U(R) over which L is trivial, s ∈ H0(U,L) is
a generator of L|U and a ∈ OX(U) is defined by f |U = a · φ(s2). We say that f is
nonnegative, resp. (strictly) positive (with respect to φ), if sgnξ,φ(f) ≥ 0, resp. > 0,
for every ξ ∈ X(R). When φ is understood, we simply write f(ξ) ≥ 0 or f(ξ) > 0,
instead of sgnξ,φ(f) ≥ 0 or sgnξ,φ(f) = 1, respectively.

It is clear that the definition of sgnξ,φ(f) does not depend on the choice of either
U or s. It does depend, however, on the square root L of L′ and on the choice of
the isomorphism φ.

Remarks 2.5.
1. Throughout this paper, we will only talk of signs of sections of invertible

sheaves L′ that are given in the form L′ = L⊗L. These signs are always understood
with respect ot the identity isomorphism of L⊗L. Therefore, we will consequently
suppress mentioning the isomorphism φ. For example, if s ∈ H0(X,L⊗2) and
t ∈ H0(X,M⊗2), then for the signs of st ∈ H0(X, (L⊗M)⊗2) we have sgnξ(st) =
sgnξ(s) · sgnξ(t), for ξ ∈ X(R).

2. Recall that X denotes a (reduced separated) R-scheme of finite type. If L is
an invertible sheaf on X and f ∈ H0(X,L⊗2), then S = {ξ ∈ X(R) : f(ξ) ≥ 0} is
a closed semi-algebraic subset of X(R).

Definition 2.6. Let L, M be invertible sheaves on a scheme X, and let s resp. t
be global sections of L resp. M . We say that s divides t, if there is a global section
u of L∨ ⊗M with t = su.

The following lemma is clear:

Lemma 2.7. Let L, M be invertible sheaves on X, let s ∈ H0(X,L) and t ∈
H0(X,M).

(a) s divides t if and only if X has a covering by open subsets Uα such that
s|Uα divides t|Uα for all α.

(b) If s is regular, and if t′ ∈ H0(X,M) satisfies st = st′ in H0(X,L ⊗M),
then t = t′. �

Lemma 2.8. Let L, M , N be invertible sheaves on X with regular global sections
s, t, u, respectively, and assume that s divides tu. If Z(s) is reduced, and if t does
not vanish identically on any irreducible component of supp(s), then s divides u.

Proof. We can localize und assume that s, t, u are not zero divisors in the ring A,
and that (s) =

√
(s). If p1, . . . , pr are the minimal prime ideals containing s, then
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the hypothesis says t /∈ p1 ∪ · · · ∪ pr. Since tu ∈ (s) by hypothesis, we conclude
u ∈

⋂
i pi = (s). �

The following lemma is the technical reason why weak compatibility is a key
notion for this paper:

Lemma 2.9. Let X be an R-scheme of finite type, and let S ⊆ X(R) be a semi-
algebraic set. Let L, M be invertible sheaves on X, and let s ∈ H0(X,L) be a
regular and reduced global section that is weakly compatible with S.

(a) If a, b ∈ H0(X,M⊗2) are nonnegative on S, and if s divides a+ b, then s
divides both a and b.

(b) If a1, . . . , ar ∈ H0(X,M) and s divides a2
1+· · ·+a2

r, then s divides a1, . . . , ar.

Proof. We may argue locally. Let x be a closed point of X and let A = OX,x be
the local ring of X at x. By fixing trivializations of L and M at x we may identify
the values of local sections of these sheaves at the stalk x with elements of A. Let
f ∈ A correspond to s. The assumption on s means that (f) = p1 ∩ · · · ∩ pr with
prime ideals pi of A, and that for i = 1, . . . , r there exists αi ∈ S̃ ∩ Sper(A) with
supp(αi) = pi.

For (a) let g, h ∈ A correspond to a resp. b. By assumption, a and b are
nonnegative on S̃. For every i = 1, . . . , r we have g+h ∈ pi, that is, (g+h)(αi) = 0,
and on the other hand g(αi) ≥ 0 and h(αi) ≥ 0. Together this implies g, h ∈ pi,
and hence g, h ∈ (f). For (b) let gj ∈ A correspond to aj . From (a) it follows
that s divides a2

j , whencee g2
j ∈ (f), for every j. Since (f) =

√
(f) we conclude

gj ∈ (f). �

3. Existence of totally real sections

The main result of this section is Theorem 3.5, which is an existence theorem for
totally real global sections of invertible sheaves on quasi-projective real varieties.
Throughout this section let R denote a real closed base field.

The following lemma is an application of the (semi-algebraic) theorem on implicit
functions:

Lemma 3.1. Let X be a reduced R-scheme of finite type and let f : X → Am be
an R-morphism. For 0 6= a ∈ Rm let Xa ⊆ X be the (scheme-theoretic) preimage
under f of the linear hyperplane

∑m
i=1 aixi = 0 in Am. Let 0 6= a ∈ Rm be such that

Xa contains no irreducible component of X, and assume that Xa has a regular R-
point ξ. Given an open neighborhood U of ξ in X(R), we have U ∩ (Xb)reg(R) 6= ∅
for all b ∈ Rm close to a.

Proof. Let W ⊆ X × Am be the closed subscheme whose E-valued points are the
pairs (η, b) ∈ X(E) × Em with

∑
i bifi(η) = 0, for E an R-algebra. The point ξ

is a regular point of X, and the tangent space to W at (ξ, a) consists of the pairs
(u, v) ∈ Tξ(X) ⊕ Rm for which 〈dξfa, u〉 + 〈f(ξ), v〉 = 0. Here dξfa ∈ Tξ(X)∗

denotes the differential of fa :=
∑
i aifi at ξ. Since ξ is a regular point of Xa (and

Xa doesn’t contain a Zariski neighborhood of ξ) we have dξfa 6= 0, and so (ξ, a)
is a regular point of W . The projection π : W → Am is submersive at (ξ, a). By
the (semi-algebraic) theorem on implicit functions ([3] Cor. 2.9.8) there is a local
continuous (semi-algebraic) section b 7→ (η(b), b) of π around a with η(a) = ξ. So
η(b) is an R-point of Xb and is, by continuity, a regular point of Xb, for b close to
a. �

Lemma 3.2. Let X be a reduced R-scheme of finite type, let L be an invertible sheaf
on X, and let V ⊆ H0(X,L) be a finite-dimensional linear subspace. Moreover let
open semi-algebraic subsets U1, . . . , Ur of X(R) be given. Then the set of all regular
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sections s ∈ V with Z(s)reg ∩Ui 6= ∅ for i = 1, . . . , r is open in V (in the euclidean
topology).

Proof. Being a regular global section is an open condition on s. Given s ∈ V
with Z(s)reg ∩ Ui 6= ∅ for i = 1, . . . , r, it follows from Lemma 3.1 that any t ∈ V
sufficiently close to s satisfies Z(t)reg ∩ Ui 6= ∅ for i = 1, . . . , r as well. �

Lemma 3.3. Let k be a field and let X be a reduced quasi-projective k-scheme
without 0-dimensional irreducible components. Let L, M be invertible sheaves on
X, with M ample. Let finitely many closed points ξ1, . . . , ξr and η1, . . . , ηp in X
be given, with ξi 6= ηj for all i, j, and assume that ξ1, . . . , ξr are regular points of
X. There is an integer n0 ≥ 0 such that, for any n ≥ n0, the sheaf L ⊗M⊗n

has a regular global section s for which ξ1, . . . , ξr are regular points of Z(s) and
η1, . . . , ηp /∈ Z(s).

Proof. Assume the lemma is shown in the case where M is very ample. In the
general case there is d ≥ 1 such that M⊗d is very ample. For i = 1, . . . , d there
exists, by the assumption, an integer ni ∈ N such that, for n ≥ ni, L ⊗M⊗(i+dn)

has a regular section as required. Therefore, if n ≥ max{i+dni : i = 1, . . . , d}, then
L⊗M⊗n has a regular section as required.

So we may assume that X ⊆ Pm is locally closed and M = OX(1). Let X ⊆ Pm
be the reduced closure of X. There exists a coherent sheaf L′ on X for which
L′|X ∼= L ([4] exercise II.5.15). By adding more points to the sequence η1, . . . , ηp
if necessary we may assume that every irreducible component of X contains one of
the ηj . Consider the 0-dimensional closed subscheme

Y :=
r∐
i=1

Spec(OX,ξi/m
2
X,ξi) q

p∐
j=1

Spec k(ηj)

of X, where k(ηj) = OX,ηj/mX,ηj denotes the residue field of ηj , and let i : Y ↪→ X
be the inclusion. We have the exact sequence

0→ F → L′ → i∗i
∗L′ → 0

of coherent sheaves on X. There exists n0 ≥ 0 such that H1(X,F (n)) = 0 for all
n ≥ n0 ([4] III.5.2). Hence the restriction map

H0(X,L′(n))→ H0(Y,L′(n))

is surjective for n ≥ n0. In particular, for every n ≥ n0, there is a section s ∈
H0(X,L′(n)) that vanishes in each of ξ1, . . . , ξr, but only of first order, and that
does not vanish in any of η1, . . . , ηp. It is clear that s|X is a regular global section
of L(n), and that ξ1, . . . , ξr are nonsingular points of Z(s|X). �

We recall the following consequences of Bertini’s theorems.

Proposition 3.4. Let k be a field of characteristic zero, and let X be a reduced
and locally closed k-subscheme of Pn.

(a) For almost all k-hyperplanes H the intersection H ∩X is reduced.
(b) If X is geometrically irreducible and dim(X) ≥ 2, then for almost all k-

hyperplanes H the intersection H ∩X is irreducible.

Here, as usual, “for almost all k-hyperplanes H” means: For all k-hyperplanes
that lie in a non-empty open subset of the dual projective space (Pnk )∗.

Proof. See [5] Cor. 6.11. �

Theorem 3.5. Let R be a real closed field and X a reduced quasi-projective R-
scheme with dim(X ′) ≥ 2 for every irreducible component X ′ of X. Let S ⊆ X(R)
be a semi-algebraic set that is Zariski dense in X.
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(a) If L, M are invertible sheaves on X and M is ample, there exists n0 ≥ 0
such that, for every n ≥ n0, L ⊗ M⊗n has a regular and reduced global
section s that is weakly compatible with S.

(b) If X is irreducible, any very ample invertible sheaf on X has a nonzero
reduced global section that is weakly compatible with S.

Proof. (a) As in the proof of Lemma 3.3, we can assume thatM is very ample. So we
may assume that X ⊆ Pn is locally closed and M = OX(1). Let X1, . . . , Xr be the
irreducible components ofX. Since S is Zariski dense inX, there exists. for each i =
1, . . . , r, a non-empty open set Ui ⊆ Xreg(R) ∩Xi(R) contained in S (Proposition
1.3). For i = 1, . . . , r fix a point ξi ∈ Ui. Choose n0 ≥ 0 so large that the conclusion
of Lemma 3.3 holds for ξ1, . . . , ξr, and that L(n) is very ample for all n ≥ n0. Fix
n ≥ n0 and a regular section s ∈ H0(X,L(n)) for which ξ1, . . . , ξr are regular points
of Z(s). Choose a finite-dimensional linear subspace V ⊆ H0(X,L(n)) containing
s such that the pair (L(n), V ) defines a locally closed embedding X ↪→ Pdim(V )−1.
Inside V there is an open neighborhood Ω of s (with respect to the euclidean
topology) consisting of regular sections t satisfying Z(t)reg∩Ui 6= ∅ for i = 1, . . . , r,
by Lemma 3.2. On the other hand, for generic t ∈ V , Bertini’s theorem 3.4 tells
us that the scheme Z(t) is reduced and Z(t) ∩ Xi is irreducible for i = 1, . . . , r.
Indeed, dim(Xi) ≥ 2 by assumption, and Xi is geometrically irreducible since Xi

has a regular R-point. In particular, there exists such t in Ω. For any such t, the
reduced closed subscheme Z(t) of X has precisely r different irreducible components
Z1, . . . , Zr, for which Zi ⊆ Xi and (Zi)reg ∩Ui 6= ∅ (i = 1, . . . , r). Hence Zi(R)∩S
is Zariski dense in Zi for each i (see 1.3), and so t is weakly compatible with S (see
2.1).

(b) We can assume X ⊆ Pn and L = OX(1). There is a non-empty open subset U
of Xreg(R) contained in S. Any linear hyperplane H that intersects X transversely
in some point of U and for which H ∩X is reduced and irreducible corresponds to
a section of L that is weakly compatible with S. �

Remark 3.6. If X is reducible in Theorem 3.5, statement (b) usually fails. As an
illustration let X = X0 ∪ · · · ∪Xn be a union of isotropic quadrics Xi in PnR with
signature (n, 1) such that the sets Xi(R) are pairwise disjoint and not nested. If the
diameters of these quadrics are sufficiently small, there is no hyperplane meeting
each Xi in a real point.

Remark 3.7. In both parts of Theorem 3.5, we may require in addition that s
does not vanish in a finite list of given closed points of X. (See Lemma 3.2.)

Corollary 3.8. Let X be a reduced quasi-projective R-scheme with dim(X ′) 6= 1
for every irreducible component X ′ of X, and let S ⊆ X(R) be a semi-algebraic
subset that is Zariski dense in X.

(a) Any divisor on X is linearly equivalent to a difference D1−D2, where D1,
D2 are reduced effective divisors that are weakly compatible with S.

(b) If X is affine, any divisor is linearly equivalent to an effective reduced di-
visor that is weakly compatible with S.

Proof. Let D be a divisor with associated invertible sheaf OX(D), and choose a
very ample invertible sheaf M on X. If n > 0 is large enough then M⊗n and
OX(D) ⊗M⊗n have regular and reduced global sections s resp. t that are weakly
compatible with S (Theorem 3.5). Hence D is linearly equivalent to Z(t) − Z(s).
If X is affine we can take M = OX and s = 1. �

Remark 3.9. Particular cases of Corollary 3.8 were proved by Roggero [11]. For
R = R and S = X(R), she proved the case where X is normal of dimension ≥ 2,
and either affine or projective.
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Remark 3.10. The exclusion of one-dimensional irreducible components in these
results cannot be avoided. More precisely, the following is known. Let X be a
connected nonsingular projective curve over R with X(R) 6= ∅. There exists an
integer n ≥ 0 such that any divisor D on X with deg(D) > n is linearly equivalent
to an effective totally real divisor ([12] Cor. 2.10; see also Monnier [6] Thm. 3.6
who proves n ≤ 2g− 1 for M -curves or (M − 1)-curves over R). More generally, we
have, for R = R:

Proposition 3.11. Let X be a connected nonsingular projective curve over R, and
let S ⊆ X(R) be an infinite semi-algebraic subset with S ∩O 6= ∅ for every oval O
of X(R). There is an integer n ≥ 0 such that every invertible sheaf L on X with
deg(L) ≥ n has a nonzero global section that is weakly compatible with S.

Proof. Let O1, . . . , Or be the different ovals of X(R). For i = 1, . . . , r, fix a point
Qi ∈ S ∩Oi. Let J be the Jacobian of X, and let J(R)0 be the identity component
of the real Lie group J(R). The class of a Weil divisor D =

∑
P nPP of degree

zero on X lies in J(R)0 if and only if, for any oval O of X(R), the sum
∑
P∈O nP

is even ([12] Lemma 2.6). By [12] Lemma 2.12 there is an integer m ≥ 1 such that,
for every α ∈ J(R)0, there exist m points P1, . . . , Pm ∈ S with α =

∑m
i=1[Pi−Q1].

We claim that the assertion of the proposition is satisfied with n := m + r − 1.
Indeed, let D be a Weil divisor with deg(D) = d ≥ m+ r− 1. There exist (unique)
numbers a2, . . . , ar ∈ {0, 1} such that the class of D− dQ1−

∑r
i=2 ai(Qi−Q1) lies

in J(R)0. Hence there exist P1, . . . , Pm ∈ S such that this divisor is equivalent to∑m
j=1[Pj −Q1]. Altogether we conclude

D ∼
(
d−m−

r∑
i=2

ai

)
Q1 +

r∑
i=2

aiQi +
m∑
j=1

Pj .

�

Remarks 3.12.
1. If S fails to meet one of the ovals, the assertion of Proposition 3.11 clearly

becomes false. If R is a non-archimedean real closed field, 3.11 may also fail when
S intersects each oval in an open set, c.f. [12] Rem. 2.15.

2. Part (b) of Theorem 3.5 clearly fails in general, even for R = R and S = X(R).
3. Now let X/R be a singular integral projective curve with |X(R)| =∞. If the

singularities of X are real nodes (possibly with nonreal tangents), Monnier [7] has
proved (for R = R) the existence of an integer n ≥ 0 such that every divisor of
degree ≥ n is linearly equivalent to some totally real divisor supported by regular
points. On the other hand, there are singular curves with ample divisors no multiple
of which is equivalent to a totally real divisor, as the next proposition shows.

Proposition 3.13. Let X be an integral projective curve over R = R with X(R) 6=
∅. Assume that X is singular, but all real points on X are regular. Then for any
d ≥ 1 there exists an invertible sheaf L on X of degree d such that, for any n ≥ 1,
L⊗n does not have any nonzero totally real global section.

Proof. Let J be the generalized Jacobian of X. From the assumption it follows
that the real Lie group J(R) is not compact. Fix a point P0 ∈ X(R), and consider
the map ϕ : X(R)→ J(R), ϕ(P ) = [P − P0], the class of the locally principal Weil
divisor P − P0. (ϕ extends to a morphism of varieties, but we only need that ϕ is
a continuous map.) The image of ϕ is a compact subset of J(R). Fix d ≥ 1, and
consider the set TRd of all divisors D of degree d for which there exists n ≥ 1 such
that nD is equivalent to an effective totally real divisor. We show that the subset

{[D − dP0] : D ∈ TRd}
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of J(R) is compact, thereby proving the proposition. Let D ∈ TRd. There are
n ≥ 1 and P1, . . . , Pnd ∈ X(R) with n[D] =

∑nd
i=1[Pi], and hence n[D − dP0] =∑nd

i=1 ϕ(Pi). Let Md ⊆ J(R) denote the set of d-fold sums of elements of im(ϕ).
Then Md is a compact set, and n[D−dP0] is a sum of n elements of Md. Therefore
the claim follows from the next lemma. �

Lemma 3.14. Let (G,+) be a commutative real Lie group with finitely many con-
nected components. Given a subset M of G, let

C =
{
x ∈ G : ∃n ≥ 1 ∃ y1, . . . , yn ∈M nx = y1 + · · ·+ yn

}
.

If M is compact, then C is compact as well.

Proof. G is isomorphic to a direct product K × V where K is a compact Lie group
and V is a real vector space of finite dimension. It suffices to prove that C +K is
compact, so we may assume G = V = Rn. But then C is contained in the convex
hull of M , and so the assertion is clear. �

3.15. As for affine curves, we only make the following remark. Let X be a nonsin-
gular affine curve over R, and let S ⊆ X(R) be a non-empty open semi-algebraic
subset that intersects every connected component of X(R). Then every invertible
sheaf on X has a nonzero global section that is weakly compatible with S. Indeed,
let X ⊆ X be the nonsingular completion of X. Let L be an invertible sheaf on X,
and choose an invertible sheaf L1 on X with L1|X ∼= L. By Riemann-Roch, there
exists an ample invertible sheaf M on X such that M |X is trivial. By Proposition
3.11, L1 ⊗M⊗n has a section on X that is weakly compatible with S, for some
n ≥ 0. Hence L has such a section on X.

4. Projective Positivstellensatz

In the following it is essential that the real closed base field is R, the usual real
numbers (or a real closed subfield thereof). The main result is:

Theorem 4.1. Let X be a reduced projective R-scheme without one-dimensional
irreducible components. Let L, M , N1, . . . , Nr be invertible sheaves on X, with M
ample, and let regular global sections hi ∈ H0(X,N⊗2

i ) (i = 1, . . . , r) be given such
that the semi-algebraic subset

K =
{
ξ ∈ X(R) : h1(ξ) ≥ 0, . . . , hr(ξ) ≥ 0

}
of X(R) is Zariski dense in X. Let moreover f ∈ H0(X,L⊗2) and g ∈ H0(X,M⊗2)
be given with f(ξ) > 0 and g(ξ) > 0 for every ξ ∈ K. Then there is n0 ≥ 0 such
that, for all n ≥ n0, there exist sums of squares se with

(1) fgn =
∑

e∈{0,1}r
se · he11 · · ·herr

in H0(X,L⊗2 ⊗ M⊗2n). (More precisely, se is a sum of squares of elements of
H0(X,Fe) with Fe = L⊗M⊗n ⊗

⊗
iN
−ei
i , for e ∈ {0, 1}r.)

See convention 2.5.1 for the meaning of signs of sections at points ξ ∈ X(R).

Proof. Under the assumptions of the theorem, we will prove the following appar-
ently weaker statement: Given f ′ ∈ H0(X,L⊗2) and g′ ∈ H0(X,M ′), where M ′

is ample and f ′(ξ) > 0, g′(ξ) 6= 0 for all ξ ∈ K, there exists n ≥ 0 such that
f ′g′2n allows an identity (1). Put M ′ = M⊗2 and apply this weaker statement to
(f ′, g′) = (f, g) and (f ′, g′) = (fg, g), to get Theorem 4.1.

Resetting notation, assume for the rest of this proof that g ∈ H0(X,M) vanishes
nowhere on K. We have to show that there is an identity (1) with some even number
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n ≥ 0. We can immediately dispense with 0-dimensional irreducible components of
X, and can therefore assume dim(X ′) ≥ 2 for every irreducible component X ′ of
X. Since we can replace M by M⊗m (and g by gm) for m ≥ 1, we may assume that
M is very ample. So let X ⊆ Pn be a closed subscheme, and let M = OX(1). We
consider the open affine subscheme Y = Xg = {x ∈ X : g(x) 6= 0} of X. The ring
R[Y ] = H0(Y,OX) of regular functions on Y is the homogeneous localization of the
graded ring S =

⊕
k≥0H

0(X,OX(k)) by the element g ∈ S1. In other words, the
elements of R[Y ] are the fractions a

gk
with k ≥ 0 and a ∈ Γ(X,OX(k)), with the

usual rules for such fractions. By the hypothesis on g we have K ⊆ Y (R). Note
that K is closed in X(R) (2.5.2), therefore K is a compact semi-algebraic subset of
Y (R).

For any invertible sheaf P on X that is generated by its global sections, there
exists s ∈ H0(X,P⊗2) with s(ξ) > 0 for all ξ ∈ X(R). Indeed, if P is generated by
its global sections s1, . . . , sm, then s := s21 + · · ·+ s2m has this property.

By Theorem 3.5(a) there exists an integer t ≥ 0 such that the invertible sheaf
L∨(t) on X has a regular and reduced global section h that is weakly compatible
with K. By Remark 3.7, we can get in addition that h does not vanish identically
on any irreducible component of supp(hi), for any i ∈ {1, . . . , r}. Since the hi are
regular, this means that also conversely no hi vanishes identically on any irreducible
component of supp(h). Consider

ϕ :=
fh2

g2t
∈ R[Y ],

a regular function on Y that is nonnegative on K.
For each i = 1, . . . , r we choose an integer ai ≥ 0 such that the sheaf N ′i :=

N∨
i (ai) is generated by global sections, and we choose pi ∈ H0(X,N ′⊗2

i ) such that
pi > 0 on X(R). Then

Hi :=
hipi
g2ai

∈ R[Y ],

and

K =
{
ξ ∈ Y (R) : H1(ξ) ≥ 0, . . . ,Hr(ξ) ≥ 0

}
.

In particular, the compact subset K of Y (R) is basic closed.
We shall prove that ϕ lies in the preordering generated by H1, . . . ,Hr in the

ring R[Y ]. Before doing so we show how to complete the proof of the theorem. By
assumption, there are integers de ≥ 0 and sums of squares se ∈ H0(X,OX(2de)),
for e ∈ {0, 1}r, such that

fh2

g2t
=

∑
e∈{0,1}r

se
g2de

· (h1p1)e1 · · · (hrpr)er
g2(a1e1+···+arer)

in R[Y ]. After multiplying with a sufficiently high even power of g we get an identity

(2) fh2g2n =
∑

e∈{0,1}r
teh

e1
1 · · ·herr

in H0(X,OX(2(t + n))), where n ≥ 0 and te is se times an even power of g and a
product of some of the pi.

Since the reduced section h of L∨(t) is weakly compatible with K, and since each
summand teh

e1
1 · · ·herr on the right is nonnegative on K, it follows from Lemma

2.9(a) that h divides tehe11 · · ·herr for all e. Since no hi vanishes identically on any
irreducible component of supp(h), it follows from Lemma 2.8 that h divides te, for
all e. Applying Lemma 2.9(b) we conclude that there are sums of squares t′e with
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te = h2t′e, for e ∈ {0, 1}r. We can therefore cancel h2 from identity (2), see Lemma
2.7, and get

fg2n =
∑
e

t′eh
e1
1 · · ·herr ,

as desired.
It remains therefore to show that ϕ lies in the preordering T of R[Y ] that is

generated by H1, . . . ,Hr. For this we use the local-global criterion of [14] Cor.
2.10. Note that this criterion does apply here since the preordering T of R[Y ] is
archimedean, K being compact (see, e.g., [9] Thm. 5.1.17). For any closed point
x of Y we have to show ϕ ∈ Tx, where Tx denotes the preordering generated by
H1, . . . ,Hr in the local ring OX,x.

Let u be a local generator of L∨(t) at x. In OX,x we have

ϕ =
f

g2t
· h2 =

fu2

g2t
·
(h
u

)2

,

and both factors ϕ1 = fu2

g2r and h
u are in OX,x. It suffices to show ϕ1 ∈ Tx. By the

hypotheses we have ϕ1 > 0 on K̃ ∩ Sper(OX,x), which is the basic closed subset
of Sper(OX,x) associated with the preordering Tx. From [16] I. Prop. 2.1 it follows
that ϕ1 ∈ Tx, and the proof is complete. �

It is worthwile to isolate the unconstrained case (no hi):

Corollary 4.2. Let X be a reduced projective R-scheme without irreducible com-
ponents of dimension one for which X(R) is Zariski dense in X. Let L, M be
invertible sheaves on X, and let f resp. g be strictly positive global sections of L⊗2

resp. M⊗2. If M is ample then fgn is a sum of squares of global sections of L⊗M⊗n
for all sufficiently large n. �

Remark 4.3. Suppose that, in the situation of Theorem 4.1, we are in the par-
ticular case where L = M⊗k for some k ≥ 0. Then we get identity (1) for all
sufficiently large n ≡ k (mod 2) without the Zariski density hypothesis on K, and
without any condition on the irreducible components of X. Indeed, we can directly
apply Schmüdgen’s Positivstellensatz [17] to the regular function ϕ = f

gk
on Xg,

which is strictly positive on K, and do not need to multiply with a factor h.

Remark 4.4. Theorem 4.1 remains true when X is a nonsingular projective curve
and |K ∩O| =∞ for every oval O of X(R). Indeed, Theorem 3.5(a) (plus Remark
3.7) is true in this case by Proposition 3.11. (We have actually not verified that
s in 3.5(a) can also be chosen to be reduced, and leave it to the reader to show
that this is true.) We do not know, however, if Theorem 4.1 holds true without the
dimension restriction on the irreducible components of X, or without the condition
that K is Zariski dense in X.

Corollary 4.5. Write x = (x0, . . . , xn). Let h1, . . . , hr ∈ R[x] be homogeneous
polynomials of even degree, and let

S = {ξ ∈ Rn+1 : h1(ξ) ≥ 0, . . . , hr(ξ) ≥ 0}.

Assume there is ξ ∈ Rn+1 with hi(ξ) > 0 for i = 1, . . . , r. If f , g ∈ R[x] are
homogeneous of (even) positive degree and strictly positive on Sr{(0, . . . , 0)}, then
fgm lies in the preordering generated by h1, . . . , hr, for all sufficiently large m ≥ 0.

Proof. That is, fgm satisfies an identity (1). This is just an affine reformulation of
Theorem 4.1 in the case X = Pn. Indeed, since S has non-empty interior in Rn+1,
the corresponding projectivized semi-algebraic subset of Pn(R) is Zariski dense in
Pn. �
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Remark 4.6. In particular, if f , g ∈ R[x] are positive definite forms of positive
degree, then fgm is a sum of squares of forms for all m� 0. In this form the result
was recently applied to time continuous dynamical systems by Ahmadi and Parrilo
[1]. Using the result, the authors prove that, whenever a homogeneous polynomial
Lyapunov function exists, there also exists one (of possibly higher degree) which is
a sum of squares and whose negative derivative is also a sum of squares.

In [18], Stengle proved that there exist positive semidefinite forms f in R[x] of
which no odd power f2m+1 is a sum of squares of forms. It follows directly from
our result that this cannot happen when f is strictly positive definite:

Corollary 4.7. Let f ∈ R[x] be a strictly positive definite form. Then there exists
an odd number m ≥ 1 such that fm is a sum of squares of forms. �

Remark 4.8. There is no such result for inhomogeneous strictly positive polyno-
mials. For example, the polynomial f = x3 +(xy2−x2−1)2 in R[x, y] is easily seen
to be strictly positive on R2, but no odd power of f is a sum of squares in R[x, y],
according to Stengle [18].

4.9. As another concrete example we may apply the Positivstellensatz to products
of projective spaces, or closed subvarieties thereof. For example, if x = (x0, . . . , xm)
and y = (y0, . . . , yn) are coordinate tuples and f , g ∈ R[x, y] are positive definite
bihomogeneous forms, where the bidegree (d1, d2) of g satisfies d1 > 0 and d2 > 0,
then fgN is a sum of squares of bihomogeneous forms for all N � 0. Similarly for
multihomogeneous forms.

From Theorem 4.1, it is possible to derive a necessary and sufficient condition,
in terms of sums of squares, for a global section to be strictly positive. To keep the
formulation simpler we restrict to the unconstrained case, however the statement
holds with constraints as well. It also holds when X is a nonsingular projective
curve (Remark 4.4).

Corollary 4.10. Let X be a reduced projective R-scheme whose irreducible com-
ponents have dimension 6= 1, let L be an invertible sheaf on X, and let f ∈
H0(X,L⊗2). Then f is strictly positive if and only if there is a very ample sheaf
M for which L ⊗ M is generated by global sections and for which the following
condition holds for some basis g1, . . . , gr of H0(X,M):

(∗) For any h ∈ H0(X,L ⊗M) there exist a real number ε > 0 and an integer
n ≥ 0 such that gn(gf − εh2) is a sum of squares of sections of L ⊗Mn+1, where
g := g2

1 + · · ·+ g2
r .

If f > 0, condition (∗) is satisfied for any ample M and any sequence g1, . . . , gr
in H0(X,M) that generates M .

Proof. First assume f > 0, let M be an ample invertible sheaf generated by global
sections g1, . . . , gr, and let h ∈ H0(X,L ⊗M). Writing g := g2

1 + · · · + g2
r , there

exists ε > 0 such that gf − εh2 > 0. Indeed, this is clear locally on X(R), and by
compactness of X(R) it is true globally. By Theorem 4.1 (or Corollary 4.2, in this
case), there exists n ≥ 0 such that gn(gf − εh2) is a sum of squares of sections of
L⊗Mn+1.

Conversely, assume that M is ample and generated by global sections g1, . . . , gr,
that L ⊗ M is generated by global sections as well, and that (∗) holds for any
h ∈ H0(X,L ⊗M). Given any point ξ ∈ X(R), we choose h such that h(ξ) 6= 0,
and conclude f(ξ) > 0. �

In the case of nonsingular curves or surfaces, we even have a projective Nicht-
negativstellensatz, due to the fact that psd = sos holds in regular local rings of
dimension ≤ 2:
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Theorem 4.11. Let X be a connected nonsingular projective curve or surface over
R with X(R) 6= ∅. Let L, M be invertible sheaves on X, with M ample, and
let f ∈ H0(X,L⊗2) and g ∈ H0(X,M⊗2) be global sections with f ≥ 0 and g > 0
everywhere on X(R). Then fgN is a sum of squares for all sufficiently large N ≥ 0.

Proof. One proceeds as in the proof of Theorem 4.1. For dim(X) = 2 the proof can
be copied word by word up to the last line. Due to the weaker assumption, we now
only know ϕ1 ≥ 0 (rather than ϕ1 > 0) on Sper(OX,x). Replacing the reference to
[16] 2.1 by [13] Thm. 4.8 resolves the matter. When dim(X) = 1, use Remark 3.10
instead of Theorem 3.5 to get the existence of h. The last step in the proof of 4.1
becomes elementary (an element in a discrete valuation ring B containing 1

2 that
is a sum of squares in the field of fractions of B is a sum of squares in B). �

Remark 4.12. Various generalizations of Theorem 4.11 are possible that we won’t
explicate here in detail. For example, in the curve case we can allow ordinary real
nodes on X (use Monnier’s theorem mentioned in 3.12, plus [13] Thm. 3.9). In
the surface case we can allow nonreal singular points on X, provided their local
rings are factorial (use [13] Cor. 4.9). We can also give constrained versions of
the Nichtnegativstellensatz 4.11, provided the constraints hi satisfy local regularity
conditions as in [14] Thm. 3.2, or more generally, as provided by the results of [16]
I and II. For all these generalizations, it only matters that the preordering Tx in
OX,x is saturated, for every closed point x of Y = Xg (see the end of the proof of
Theorem 4.1).
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Mat. Pura Appl. (4) 135, 349–362 (1984).

[12] C. Scheiderer: Sums of squares of regular functions on real algebraic varieties. Trans. Am.

Math. Soc. 352, 1039–1069 (1999).
[13] C. Scheiderer: On sums of squares in local rings. J. reine angew. Math. 540, 205–227 (2001).

[14] C. Scheiderer: Sums of squares on real algebraic surfaces. Manuscr. math. 119, 395–410
(2006).

[15] C. Scheiderer: Positivity and sums of squares: A guide to recent results. In: Emerging
Applications of Algebraic Geometry, IMA Vol. Math. Appl. 149, Springer, New York, 2009,
pp. 271–324.

[16] C. Scheiderer: Weighted sums of squares in local rings and their completions I, II. Math. Z.

266, 1–19 (I) and 21–42 (II) (2010).
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