Übungsblatt 10 zur Algebra

Wintersemester 2006/2007

Aufgabe 1: Sei L|K eine algebraische Körpererweiterung. Jedes Polynom aus K[X] zerfalle über L. Zeigen Sie, daß L dann algebraisch abgeschlossen ist.

Wir bezeichnen mit $\mathbb{P} := \{2, 3, 5, \dots\}$ die Menge der Primzahlen. Für jedes $p \in \mathbb{P}$ ist bekanntlich $\mathbb{F}_p := \mathbb{Z}/(p)$ ein endlicher Körper.

Aufgabe 2: Sei K ein endlicher Körper mit char K = p. Wir identifizieren \mathbb{F}_p mit seinem Bild unter der Einbettung $\mathbb{F}_p \hookrightarrow K$ und nehmen daher $\mathbb{F}_p \subseteq K$ an. Zeigen Sie:

- (a) Es gibt ein $n \in \mathbb{N}_{>1}$ mit $\#K = p^n$.
- (b) Ist $n \in \mathbb{N}_{\geq 1}$ und $\#K = p^n$, so ist K der Zerfällungskörper des Polynoms

$$X^{p^n} - X \in \mathbb{F}_p[X]$$

über \mathbb{F}_p .

Aufgabe 3: Sei $(p,n) \in \mathbb{P} \times \mathbb{N}_{\geq 1}$ und L der Zerfällungskörper von $X^{p^n} - X \in \mathbb{F}_p[X]$ über \mathbb{F}_p . Zeigen Sie:

- (a) Das Polynom $X^{p^n}-X$ hat in L nur einfache Nullstellen. (b) $K:=\{a\in L\mid a^{p^n}=a\}$ ist ein Unterkörper von L.
- (c) L = K
- (d) $\#K = p^n$

Aufgabe 4: Zeigen Sie mit Hilfe der beiden letzten Aufgaben:

(a) Zu jedem endlichen Körper K gibt es genau ein Paar

$$(p,n) \in \mathbb{P} \times \mathbb{N}_{>1}$$

 $mit \# K = p^n.$

(b) Zu jedem Paar $(p,n) \in \mathbb{P} \times \mathbb{N}_{>1}$ gibt es bis auf Isomorphie genau einen endlichen Körper K mit $\#K = p^n$ und zwar den Zerfällungskörper von $X^{p^n} - X \in \mathbb{F}_p[X]$ über \mathbb{F}_p .

Abgabe bis Freitag, den 19. Januar, bis 10:30 Uhr.