Übungsblatt 11 zur Algebra

Wintersemester 2006/2007

Aufgabe 1: Sei (K, \leq) ein archimedisch angeordneter Körper und

$$\rho:K\to\mathbb{R}$$

die in der Vorlesung definierte Abbildung, die jedem Element $a \in K$ die eindeutig bestimmte reelle Zahl $\varrho(a) \in \mathbb{R}$ zuordnet mit

$$U_a \le \varrho(a) \le O_a$$
,

wobei $U_a := \{ s \in \mathbb{Q} \mid s < a \}$ und $O_a := \{ r \in \mathbb{Q} \mid a \leq r \}$. Zeigen Sie:

- (a) ϱ ist ein Ringhomomorphismus.
- (b) $a \le b \iff \varrho(a) \le \varrho(b)$ für alle $a, b \in K$
- (c) Ist (K, \leq) schnittvollständig, so ist ϱ ein Isomorphismus angeordneter Körper (das heißt es gelten (a), (b) und zusätzlich ist ϱ bijektiv).

Aufgabe 2: Sei K ein Körper. Eine Teilmenge $P \subseteq K$ heißt Positivbereich von K, wenn sie nicht -1 enthält, unter Addition und Multiplikation abgeschlossen ist und $(a \in P \text{ oder } -a \in P)$ für alle $a \in K$ gilt:

$$-1 \notin P$$
, $P + P \subseteq P$, $PP \subseteq P$ und $P \cup -P = K$.

Zeigen Sie:

- (a) Ist P ein Positivbereich von K, so $K^2 \subseteq P$ (d.h. $a^2 \in P$ für alle $a \in K$) und $P \cap P = \{0\}$.
- (b) Ist \leq eine Anordnung von K, so ist $P_{\leq} := \{a \in K \mid a \geq 0\}$ ein Positivbereich von K.
- (c) Ist P ein Positivbereich von K, so wird durch

$$a \leq_P b : \iff b - a \in P \qquad (a, b \in K)$$

eine Anordnung von K definiert.

(d) Durch $\leq \mapsto P_{\leq}$ und $P \mapsto \leq_P$ werden zueinander inverse Bijektionen zwischen der Menge der Anordnungen von K und der Menge der Positivbereiche von K definiert.

Aufgabe 3: Für ein Polynom $f \in \mathbb{R}[X]$ mit $f \neq 0$ bezeichne $\mathrm{lc}(f)$ seinen Leitkoeffizienten. Zeigen Sie, daß

$$P := \left\{ \frac{f}{g} \mid f, g \in \mathbb{R}[X], g \neq 0, (f = 0 \text{ oder } \mathrm{lc}(fg) > 0) \right\} \subseteq \mathbb{R}(X)$$

ein Positivbereich von $\mathbb{R}(X)$ ist, dessen zugehörige Anordnung \leq_P nicht archimedisch ist.

Abgabe bis Freitag, den 26. Januar, bis 10:30 Uhr.