Wintersemester 2009/2010 Übungsblatt 11 18.01.2010

Lineare Algebra I

Aufgabe 11.1:

Sei K ein Körper. Berechnen Sie den Rang der folgenden Matrizen. Überprüfen Sie außerdem, ob sie invertierbar sind, und falls ja, bestimmen Sie die zugehörige inverse Matrix.

(a)

$$\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5 \\
4 & 5 & 6 \\
5 & 6 & 7 \\
6 & 7 & 8 \\
7 & 8 & 9
\end{pmatrix}$$

für $K = \mathbb{Q}$ und für $K = \mathbb{F}_3$.

(b)

$$\left(\begin{array}{ccc}
3 & 2 & 1 \\
1 & 0 & 6 \\
3 & 4 & 4
\end{array}\right)$$

für $K = \mathbb{F}_7$.

(c)

$$\left(\begin{array}{ccc}
6 & 1 & 2 \\
1 & 3 & 1 \\
5 & 4 & 2
\end{array}\right)$$

für $K = \mathbb{F}_7$.

(d)

$$\begin{pmatrix} \hat{\iota} & 1 + 5\hat{\iota} & 3 + 3\hat{\iota} \\ 6\hat{\iota} & 2 + 2\hat{\iota} & 6 \\ 1 + \hat{\iota} & 3 + 4\hat{\iota} & 5 + 4\hat{\iota} \end{pmatrix}$$

$$f \ddot{u} r K = \mathbb{F}_{49} = \mathbb{F}_7[\overset{\circ}{\iota}].$$

(e)

$$\begin{pmatrix}
7 & 1 & 2 & 5 & 4 \\
12 & 6 & 7 & 5 & 9 \\
1 & 3 & 1 & 0 & 2 \\
4 & 2 & 4 & 0 & 3 \\
-11 & 7 & -1 & -10 & -2 \\
13 & -1 & 3 & 10 & 6
\end{pmatrix}$$

für $K = \mathbb{Q}$ und für $K = \mathbb{F}_5$.

Aufgabe 11.2:

Sei K ein Körper, und sei $n \in \mathbb{N}$.

(a) Seien H_1, \ldots, H_r Hyperebenen im K^n (vgl. Aufgabe 9.4). Zeigen Sie, dass

$$\dim\left(\bigcap_{i=1}^r H_i\right) \ge n - r.$$

(b) Bestimmen Sie die Anzahl aller Hyperebenen im K^n für den Fall, dass K ein endlicher Körper mit m Elementen ist.

Aufgabe 11.3:

Sei K ein Körper, und sei $d \in \mathbb{N}_0$. Seien weiter $a_1, \ldots, a_n \in K$ paarweise verschieden. Sei $f := E_{a_1, \ldots, a_n}^{(d)} \colon K[X]_d \to K^n$ der Einsetzungshomomorphismus $p \mapsto (p(a_1), \ldots, p(a_n))$. Zeigen Sie:

- (a) f ist genau dann injektiv, wenn $n \ge d+1$. (Hinweis: Verwenden Sie ein Ergebnis aus §4 der Vorlesung.)
- (b) f ist genau dann surjektiv, wenn $n \leq d + 1$. (Hinweis: Konstruieren Sie zuerst Urbilder für die Einheitsvektoren.)
- (c) Bestimmen Sie den Rang der Vandermonde-Matrix

$$\left(\begin{array}{cccc}
1 & a_1 & \cdots & a_1^d \\
\vdots & \vdots & \cdots & \vdots \\
1 & a_n & \cdots & a_n^d
\end{array}\right).$$

Aufgabe 11.4:

Sei K ein Körper. Wir betrachten den Polynomring K[X] als K-Vektorraum.

- (a) Zeigen Sie: Ist $I \subseteq K[X]$ ein Ideal von K[X], so ist K[X]/I ein K-Vektorraum.
- (b) Zeigen Sie, dass $V := K[X]/(X^3 2X^2 + 1)$ als K-Vektorraum endlich erzeugt ist. Finden Sie eine Basis von V und bestimmen Sie somit die Dimension von V.
- (c) Sei $f \colon K[X] \to K[X]$ die lineare Abbildung $p \mapsto Xp$. Zeigen Sie, dass f für jedes Ideal I von K[X] eine lineare Abbildung $\overline{f} \colon K[X]/I \to K[X]/I$ mit $\overline{f}(\overline{v}) = \overline{f(v)}$ induziert. Bestimmen Sie die Darstellungsmatrix von \overline{f} für $I = (X^3 2X^2 + 1)$ bezüglich der von Ihnen in Teilaufgabe (b) gefundenen Basis.
- (d) Sei nun $p \in K[X] \setminus \{0\}$ beliebig mit $\deg p = d$. Bestimmen Sie auch hier eine Basis und die Dimension von K[X]/(p).

Abgabe bis Montag, den 25. Januar, 10 Uhr in die Briefkästen neben F411.