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Übungsblatt 2 zur Einführung in die Algebra

Aufgabe 1. Sei R ein kommutativer Ring und n ∈ N0. Zeige, daß die Mengen der

(a) invertierbaren oberen

(b) invertierbaren unteren

(c) unipotenten oberen und

(d) unipotenten unteren

Dreiecksmatrizen der Größe n× n jeweils Untergruppen von GLn(R) sind.

Hinweis: Man kann die Formel aus §9.2 der Linearen Algebra benutzen, welche besagt

A−1 = (detA)−1(comA)T ,

wobei die Komatrix comA = ((−1)i+j detAij)1≤i,j≤n aus den nach einem Schachbrettmuster mit
Vorzeichen versehenen (n−1)-Minoren detAij der Matrix A gebildet ist (Aij bezeichne die Matrix,
die aus A durch Streichen der i-ten Zeile und j-ten Spalte entsteht).

Solution
From the hint we need only note that if the matrix is a upper triangular matrix, then the

Komatrix will be a lower triangular matrix, as removing the ith column and jth row, when (i, j)
are a position in the “upper” triangle, will give again a upper triangular matrix, but with at least
one zero on the diagonal. Hence the transpose is an upper triangular matrix and hence the result.
It is easy to adapt this to the other cases.

The following is an alternative proof. It uses the Cayley–Hamilton theorem. In lectures this
was proven only for fields, but the proof from the lectures works for commutative rings. Again, we
much show that for any upper triangular matrix, the inverse is also an upper triangular matrix.

Let A ∈ GLn(R), and let χA be the characteristic polynomial of A. Then by Cayley-Hamilton

χA(A) = An + λn−1A
n−1 + · · ·+ λ1A+ λ0I = 0

for some λi ∈ R and λ0 = det(A) ∈ R×. Hence

A

(
An−1 + λn−A

n−2 + · · ·+ λ1I

λ0

)
= I.

and hence

A−1 =
An−1 + λn−1A

n−2 + · · ·+ λ1I

λ0

which is clearly an upper triangular matrix if A is an upper triangular matrix.
Again, this is easy to adapt to the other cases.

Aufgabe 2. Zeige, daß jede Gruppe gerader Ordnung außer dem neutralen Element noch min-
destens ein weiteres selbstinverses Element besitzt.

Solution
Let G be a group of even order, and consider the set S = {g ∈ G : g 6= g−1}. We claim that

|S| is even; to see this, let a ∈ S, so that a 6= a−1; since (a−1)−1 = a 6= a−1, we see that a−1 ∈ S
as well. Thus the elements of S may be exhausted by repeatedly selecting an element and pairing
it with its inverse, from which it follows that |S| is a multiple of 2 (i.e., is even). Now, because



S∩ (G\S) = ∅ and S∪ (G\S) = G, it must be that |S|+ |G\S| = |G|, which, because |G| is even,
implies that |G \ S| is also even. The identity element e of G is in G \ S, being its own inverse, so
the set G \ S is nonempty, and consequently must contain at least two distinct elements; that is,
there must exist some b 6= e ∈ G \ S, and because b /∈ S, we have b = b−1, hence b2 = 1. Thus b is
an element of order 2 in G.

Aufgabe 3. Gibt es einen Körper K und ein n ∈ N0 derart, daß D6 isomorph ist zur Gruppe der
invertierbaren oberen Dreiecksmatrizen der Größe n× n über K? Begründe die Antwort!

Solution/hint
Clearly the field K must be finite. D6 has 12 elements. For the finite field with m elements,

the number of elements in the group of invertible upper triangular n× n matrices is

(m− 1)n ·m 1
2 n(n−1)

((m− 1)n comes from the possible entries for the diagonal, and m
1
2 n(n−1) from the other possible

entries). A quick experiment shows that m = 3 and n = 2 gives 12, so we take the field is the finite
field with 3 elements and 2× 2 upper triangular matrices. We label this group G.

We may then take r =
(

2 0
1 2

)
and s =

(
2 0
0 1

)
, then we see that r and s generate the

groupG and r6 = 1 = s2 and rs = sr−1. From this, one can see thatG = {r, r2 . . . , r5, sr0, sr, . . . , sr5},
and moreover, as |G| = 12, all these elements are distinct. We can use this set, and the relations
r6 = 1 = s2 and rs = sr−1 to build a multiplication table for G. Similarly we know that the
elements of D6 has generators u,v that satisfy u6 = 1 = v2 and uv = vu−1, which will also give us
the multiplication table for D6. These mulitiplication tables will therefore clearly have the same
structure, and the isomorphism is now clear.

Aufgabe 4. Sei

P :=


±1
±1
±1


die Menge der acht Eckpunkte eines Würfels. Zeige durch anschauliche geometrische Überlegungen

{A ∈ SO3 | ∀x ∈ P : Ax ∈ P} ∼= S4.

Solution
Note that we must consider the group of rotations of the cube (i.e., reflections not included).

Let G be the group of rotations.
The cube has 4 diagonals. If we label the vertices of the top face A, B, C, D (clockwise), and

the vertices of the bottom face E, F, G, H, in such a way that A is above E, B above F, and so
on, the diagonals are:

(AG), (BH), (CE), and (DF )

Note that we consider the diagonals as lines–(AB) is the same object as (BA).
Every rotation of the cube maps a diagonal to a diagonal as rotation preserves distance and

the distance between a vertex and one diagonal to it is greater than between it and any other
vertex.

This shows that there is a homomorphism from G to S4. We must show that the homomorphism
is bijective. As both groups are finite and have the same number of elements, the homomorphism
will be injective if and only if it is surjective. Is is somewhat easier to show that it is surjective,
i.e. that, for any permutation of the diagonals, there is a rotation of the cube the induces that
permutation.

Now, S4 is generated by the transpositions (the permutations that exchange two elements).
Therefore, it is enough to show that any transposition of diagonals can be achieved by means of
a rotation.



Assume that we want to exchange the diagonals (AG) and (DF). Let M be the midpoint of
(AD) and N the midpoint of (GF). Rotate through 180 degrees in the line (MN). This will induce
the following permutation of the vertices:

τADτBHτCEτFG,

where τij is the transposition of the elements i,j. (You can verify this by noting that the points
M and N are fixed by the rotation, and that distances are preserved.)

If we consider the 4 diagonals (AG), (BH), (CE), (DF), we note that (BH) and (CE) will remain
fixed *as diagonals* (the vertices will be exchanged, but the diagonals will remain the same), and
(AG) and (DF) will be interchanged. This shows that the rotation induces a transposition of these
two diagonals, and similar rotations can be used to generate any transposition, and therefore any
permutation of the diagonals can be acheived by a composition of such rotations.

This shows that the homomorphism is surjective, and, as the groups have the same order, this
is an isomorphism.


