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Übungsblatt 13 zur Einführung in die Algebra: Solutions

Aufgabe 1. Zeige

(a) Aut(Q(
√

2,i)|Q) ∼= V4.

(b) Aut(Q( 3
√

2)|Q) ∼= {1}.

(c) Aut(Q( 4
√

2,i)|Q(i)) ∼= C4.

Solution

(a) f = X2 + 1 and g = X2 − 2 are the minimum polynomials of i and
√

2 over Q respectively
and hence Q(i,

√
2) is a splitting field of the polynomial fg = (X2 + 1)(X2 − 2). By 4.3.11

any automorphism of an algebraic closure of Q must map i to either i or −i and
√

2 to either√
2 or −

√
2. Hence Aut(Q(

√
2,i)|Q) has at most four elements.

Q(i,
√

2)|Q is a normal extension as it is the splitting field of fg. Further Q(i)|Q and Q(
√

2)|Q
are also normal extensions, of degree 2, by example 4.3.13. Since X2 +1 is clearly irreducible
over Q(

√
2), since for all x ∈ R we have X2 + 1 > 1, we have Q(i,

√
2)|Q(

√
2) is normal and

of degree 2, and hence, by the tower law, Q(i,
√

2)|Q(i) is also of degree 2, and hence also
normal.

Let Q be an algebraic closure of Q. Note that this will also be an algebraic closure of Q(i),
Q(
√

2) and Q(
√

2,i).

Since f is a minimum polynomial over Q(
√

2) of i and −i, there exists an ρ : Q→ Q such that
ρ(i) = −i and is the identity on Q(

√
2) (by 4.3.11). By 4.3.14 (e), ρ(Q(

√
2,i)) = Q(

√
2,i),

and hence ρ defines an automorphism on Q(
√

2,i), which (by abusing the notation) will
we also call ρ. Since we know ρ(i) = −i, ρ(

√
2) =

√
2 and ρ(Q) = Q, we know how this

automorphism acts on Q(
√

2,i).

Similarly we have a element τ ∈ Aut(Q(
√

2,i)|Q) such that τ(
√

2) = −
√

2, τ(i) = i and
τ(Q) = Q.

Hence we have {id, ρ, τ, τ ◦ ρ} ⊆ Aut(Q(
√

2,i)|Q). But we know the automorphism has a
maximum of four elements, therefore {id, ρ, τ, τ ◦ρ} = Aut(Q(

√
2,i)|Q). This group is clearly

isomorphic to V4.

(b) Let ρ ∈ Aut(Q( 3
√

2)|Q) and f = X3 − 2. Then

(ρ( 3
√

2))3 = ρ(( 3
√

2)3) = ρ(2) = 2.

So the ρ( 3
√

2) must be another cube root of 2 for any automorphism in Aut(Q( 3
√

2)|Q). But
we know (since, for example, f ′(x) > 0 for all x ∈ R) that f has only one real root, so it must
have two non-real roots. But Q( 3

√
2) ⊆ R, so these two roots are not elements of Q( 3

√
2).

Hence any automorphism in Aut(Q( 3
√

2)|Q) has to map 3
√

2 to itself, and since any element
in Aut(Q( 3

√
2)|Q) must also be identity on Q, we have the result.

(c) Note that over C, the polynomial f = X4 − 2 splits as

f = (X − 4
√

2)(X + 4
√

2)(X − i
4
√

2)(X + i
4
√

2).



In particular, as in (a), this implies that there are at most four elements in Aut(Q( 4
√

2,i)|Q(i)),
as every automorphism over an algebraic closure of Q(i) must map one of these roots to ano-
ther.

This also shows that Q( 4
√

2,i)|Q is a normal extension. The extension Q( 4
√

2) is of degree 4,
as 4
√

2 has minimum polynomial X4−2 (which is irreducible by Eisenstein). Since we clearly
have that i /∈ Q( 4

√
2) ⊆ R, it follows that Q( 4

√
2,i)|Q( 4

√
2) is a normal extension of degree

2. We also clearly have that Q(i)|Q is a normal extension of degree 2. The tower law now
implies that Q( 4

√
2,i)|Q(i) is of degree 4. Hence X4− 2 is a minimum polynomial of 4

√
2 over

Q(i), and hence Q( 4
√

2,i) is a splitting field for X4−2 over Q(i), and therefore Q( 4
√

2,i)|Q(i)
is a normal extension.

Now, 4.3.11 implies that there exists an automorphism on some algebraic closure of Q(i),
such that ρ(Q(i)) = Q(i) and ρ( 4

√
2) = i

4
√

2, as 4
√

2 and i
4
√

2 have the same irreducible
polynomial over Q(i). Moreover, by 4.3.14 (e) ρ(Q( 4

√
2,i)) = Q( 4

√
2,i). Hence ρ defines an

automorphism on Q( 4
√

2,i), which we will again call ρ by abuse of notation.

The map ρ acts as follows
4
√

2 7→ i
4
√

2 7→ − 4
√

2 7→ −i
4
√

2.

In particular ρ4 = id and ρ2 and ρ3 are also distinct elements of Aut(Q( 4
√

2,i)|Q(i)). That is
{id, ρ, ρ2,ρ3} ⊆ Aut(Q( 4

√
2,i)|Q(i)). But we know the automorphism has a maximum of four

elements, therefore {id, ρ, ρ2,ρ3} = Aut(Q( 4
√

2,i)|Q(i)). This group is clearly isomorphic to
C4

Aufgabe 2. Sei α ∈ R mit α4 = 5. Zeige, dass

(a) Q(iα2) normal über Q ist.

(b) Q(α+ iα) normal über Q(iα2) ist.

(c) Q(α+ iα) nicht normal über Q ist.

Solution

(a) We have that (iα2)2 = −5, so iα2 is a root of the polynomial X2 + 5 ∈ Q[X]. So, Q(iα2)
is a splitting field of this polynomial (the other root is −iα2 ∈ Q(iα2)), hence Q(iα2) is a
normal extension of Q(iα2).

(b) We have that (α+ iα)2 = 2iα2, so α+ iα is a root of the polynomial X2−2iα2 ∈ Q(iα2)[X].
So, Q(α+ iα) is a splitting field of this polynomial (the other root is −α− iα ∈ Q(α+ iα)),
hence Q(α+ iα) is a normal extension of Q.

(c) We have that α+ iα is a root of the polynomial X4 + 20 ∈ Q[X]. This polynomial factories
(over, say, C) as

X4 + 20 = (X − (α+ iα))(X − (−α− iα))(X − (α− iα))(X − (−α+ iα)).

So if Q(α+ iα) is a normal extension of Q, then we must have that (α+ iα),(−α− iα),(α−
iα),(−α+ iα) ∈ Q. This implies that i, α ∈ Q(α+ iα), and hence that Q(α+ iα) = Q(i, α).

We know that [Q(α + iα) : Q] = 4 , and that [Q(α) : Q] = 4 (because X4 − 5 is irreducible
by Eisenstein), so if Q(α + iα) = Q(i, α), then Q(α + iα) = Q(α) and hence i ∈ Q(α). But
Q(α) ⊆ R, and hence i /∈ Q(α), and therefore Q(α+ iα) is not a normal extension of Q.

Note, this exercise shows that normal is not a transitive property of field extension. That is, a
normal extension of a normal extension is not necessarily normal.

Aufgabe 3. Sei G eine Gruppe und a,b ∈ G. Gelte ab = ba und seien die Ordnungen von a und b
teilerfremd (d.h. 1 ∈ (ord a,ord b)). Zeige, dass ord (ab) = (ord a)(ord b).



Solution

Let x = ord a, y = ord b and z = ord (ab). Then, since ab = ba, we have

(ab)xy = axybxy = (ax)y(by)x = 1y1x = e,

so z = ord (ab) 6 (ord a)(ord b) = xy.
We also have

(ab)z = azbz = 1,

so az = (b−1)z, and so ((b−1)z)x = (az)x = 1, so ord b−1 = ord b divides zx. But y is coprime
to x, so y divides z. Similarly x divides z. Therefore xy 6 z, as x and y are coprime, and hence
xy = z.

Aufgabe 4. Sei K ein endlicher Körper. Zeige, dass

K = {b2 + c2 | b,c ∈ K}.

Solution

Let K be a finite field having characteristic p and |K| = pn. Define ρ : K → K by ρ(x) = x2 for
all x ∈ K.

If p = 2, then ρ is an isomorphism, and so for any u ∈ K there is v ∈ K with u = v2 + 02.
If p > 2, then for all x, y ∈ K , x2 = y2 implies that (x + y)(x − y) = 0. Hence, y = x or

y = −x, and so |Im ρ| > pn+1
2 (0 is in the image, and otherwise there are at least pn−1

2 elements in
the image as ρ(y) 6= ρ(x) if x 6= y and x 6= −y. Hence there are at least 1 + pn−1

2 = pn+1
2 elements

in the image).
Let m = pn+1

2 and choose distinct elements x2
1, . . . , x

2
m ∈ K . Hence, for any u ∈ K and for

all 1 6 i 6 m, u− x2
i are distinct elements in K . Since 2m > pn , there exists j and k such that

x2
j = u− x2

k . That is, u = x2
j + x2

k , as desired.


