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Ubungsblatt 13 zur Einfithrung in die Algebra: Solutions

Aufgabe 1. Zeige

(a)
(b)
()

Aut(Q(VZH)|Q) = V.
Aut(Q(V2)|Q) = {1}.
Aut(Q(VZ.1)|Q()) = Cu.

Solution

(a)

()

f=X%2+1and g = X2 — 2 are the minimum polynomials of i and v/2 over Q respectively
and hence Q(i,v/2) is a splitting field of the polynomial fg = (X2 4 1)(X? —2). By 4.3.11
any automorphism of an algebraic closure of Q must map i to either i or —i and /2 to either
V2 or —/2. Hence Aut(Q(v/2,1)|Q) has at most four elements.

Q(1,v/2)|Q is a normal extension as it is the splitting field of fg. Further Q(i)|Q and Q(v/2)|Q
are also normal extensions, of degree 2, by example 4.3.13. Since X2 +1 is clearly irreducible
over Q(v/2), since for all z € R we have X2 4+ 1 > 1, we have Q(i,v/2)|Q(v/2) is normal and
of degree 2, and hence, by the tower law, Q(i,v/2)|Q(1) is also of degree 2, and hence also
normal.

Let Q be an algebraic closure of Q. Note that this will also be an algebraic closure of Q(),
Q(v2) and Q(v2.1).

Since f is a minimum polynomial over Q(v/2) of i and —1, there exists an p : Q — Q such that
p(i) = —i and is the identity on Q(v/2) (by 4.3.11). By 4.3.14 (e), p(Q(v/2.,1)) = Q(V2.1),
and hence p defines an automorphism on Q(\/i,ﬁ), which (by abusing the notation) will
we also call p. Since we know p(i) = —1, p(v/2) = V2 and p(Q) = Q, we know how this
automorphism acts on Q(v/2,1).

Similarly we have a element 7 € Aut(Q(v/2,i)|Q) such that 7(v/2) = —v/2, 7(i) = i and
T(Q) = Q.

Hence we have {id, p,7,7 o p} C Aut(Q(v/2,i)|Q). But we know the automorphism has a
maximum of four elements, therefore {id, p, 7,70 p} = Aut(Q(+/2,1)|Q). This group is clearly
isomorphic to V.

Let p € Aut(Q(v/2)|Q) and f = X® — 2. Then
(VD) = p(VD)®) = p(2) = 2.

So the p(4/2) must be another cube root of 2 for any automorphism in Aut(Q(+/2)|Q). But
we know (since, for example, f'(x) > 0 for all z € R) that f has only one real root, so it must
have two non-real roots. But Q(+v/2) C R, so these two roots are not elements of Q(+/2).
Hence any automorphism in Aut(Q(+/2)|Q) has to map +/2 to itself, and since any element
in Aut(Q(+/2)|Q) must also be identity on Q, we have the result.

Note that over C, the polynomial f = X* — 2 splits as

f=(X - V2)(X + V2)(X —ivV2)(X +1V?2).



In particular, as in (a), this implies that there are at most four elements in Aut(Q(+v/2,1)|Q(1)),
as every automorphism over an algebraic closure of (1) must map one of these roots to ano-
ther.

This also shows that Q(+/2,1)|Q is a normal extension. The extension Q(+v/2) is of degree 4,
as v/2 has minimum polynomial X* — 2 (which is irreducible by Eisenstein). Since we clearly
have that i ¢ Q(v/2) C R, it follows that Q(+/2,1)|Q(+/2) is a normal extension of degree
2. We also clearly have that Q(1)|Q is a normal extension of degree 2. The tower law now
implies that Q(+v/2,1)|Q(1) is of degree 4. Hence X* — 2 is a minimum polynomial of v/2 over
Q(1), and hence Q(+/2,1) is a splitting field for X* —2 over Q(i), and therefore Q(+/2,1)|Q(1)
is a normal extension.

Now, 4.3.11 implies that there exists an automorphism on some algebraic closure of Q(i),
such that p(Q(i)) = Q(i) and p(v/2) = 1v/2, as v/2 and 1v/2 have the same irreducible
polynomial over Q(i). Moreover, by 4.3.14 (e) p(Q(v/2,1)) = Q(v/2,i). Hence p defines an
automorphism on Q(+v/2,1), which we will again call p by abuse of notation.

The map p acts as follows

V2= iV2- V20— —iV2.
In particular p* = id and p? and p?® are also distinct elements of Aut(Q(+/2,i)|Q(1)). That is
{id, p, p?,p%} C Aut(Q(+v/2,1)|Q(i)). But we know the automorphism has a maximum of four
elements, therefore {id, p, p?,0°} = Aut(Q(+v/2,1)|Q(i)). This group is clearly isomorphic to
Cy

Aufgabe 2. Sei a € R mit a* = 5. Zeige, dass
(a) Q(ia?) normal iiber Q ist.
(b) Q(a + i) normal iiber Q(ia?) ist.

(¢) Q(a + i) nicht normal iiber Q ist.

Solution

(a) We have that (ia?)? = —5, so ia? is a root of the polynomial X2 + 5 € Q[X]. So, Q(ia?)
is a splitting field of this polynomial (the other root is —ia? € Q(ia?)), hence Q(ia?) is a
normal extension of Q(ia?).

(b) We have that (a+ia)? = 2ia?, so a+ia is a root of the polynomial X2 —2ia? € Q(ia?)[X].
So, Q(a + 1) is a splitting field of this polynomial (the other root is —a — ia € Q(a + 1)),
hence Q(« + i) is a normal extension of Q.

(c) We have that « + ic is a root of the polynomial X* + 20 € Q[X]. This polynomial factories
(over, say, C) as

X420 = (X — (a+1ia)(X — (—a—ia))(X — (a —ia))(X — (—a +ia)).
So if Q(«+ 1) is a normal extension of Q, then we must have that (« +i«a),(—a — i), (o —
ia),(—a + i) € Q. This implies that i, € Q(a + i), and hence that Q(a + ia) = Q(1, o).

We know that [Q(a +ia) : Q] =4 , and that [Q(a) : Q] = 4 (because X* — 5 is irreducible
by Eisenstein), so if Q(a + ia) = Q(i, a), then Q(a + ia)) = Q(«r) and hence 1 € Q(a). But
Q(a) € R, and hence 1 ¢ Q(«), and therefore Q(« + icr) is not a normal extension of Q.

Note, this exercise shows that normal is not a transitive property of field extension. That is, a
normal extension of a normal extension is not necessarily normal.

Aufgabe 3. Sei GG eine Gruppe und a,b € G. Gelte ab = ba und seien die Ordnungen von a und b
teilerfremd (d.h. 1 € (ord a,ord b)). Zeige, dass ord (ab) = (ord a)(ord b).



Solution

Let x = orda, y = ord b and z = ord (ab). Then, since ab = ba, we have
(ab)™ = a®™b™ = (a®)Y(Y)* = 1Y1" = e,

so z = ord (ab) < (ord a)(ord b) = xy.
We also have
(ab)? = a®b® =1,
so a® = (b7 1)%, and so ((b71)*)* = (a*)* = 1, so ord b=! = ord b divides zz. But y is coprime
to z, so y divides z. Similarly x divides z. Therefore xy < z, as = and y are coprime, and hence
Ty = 2.

Aufgabe 4. Sei K ein endlicher Korper. Zeige, dass
K={*+c|bce K}.
Solution

Let K be a finite field having characteristic p and |K| = p". Define p : K — K by p(x) = 22 for
all z € K.
If p = 2, then p is an isomorphism, and so for any u € K there is v € K with u = v? + 02.
If p > 2, then for all 7,y € K , 2% = y? implies that (z + y)(x — y) = 0. Hence, y = z or

L L (0 is in the image, and otherwise there are at least 2 o L elements in

y = —x, and so |Im p| >
the image as p(y) # p(x) if x # y and = # —y. Hence there are at least 1+ p“T—1 = L;l elements
in the image).

Let m = pnT‘H and choose distinct elements 22,...,22, € K . Hence, for any v € K and for
all 1 <4 < m, u— 22 are distinct elements in K . Since 2m > p" | there exists j and k such that
x? =u— x% . That is, u = :v? + xi , as desired.



