Übungsblatt 3 zur Algorithmischen Algebraischen Geometrie

Aufgabe 1.

Seien $\ell_1, \ldots, \ell_s \in K[X_1, \ldots, X_n]$ linear, das heißt vom Grad ≤ 1 . Zeige, dass die folgenden Bedingungen äquivalent sind:

- (a) $V(\ell_1,\ldots,\ell_n)\cap K^n=\emptyset$
- (b) $V(\ell_1, \dots, \ell_n) = \emptyset$
- (c) Es gibt $a_1, \ldots, a_n \in K$ mit $1 = a_1 \ell_1 + \cdots + a_n \ell_n$.

Finde Gegenbeispiele, die zeigen, dass man auf die Voraussetzung der Linearität der ℓ_i weder in " $(a) \Rightarrow (b)$ " noch in " $(b) \Rightarrow (c)$ " verzichten kann.

(Hinweis: Benutze nicht den Hilbertschen Nullstellensatz, sondern Lineare Algebra.)

Aufgabe 2.

Sei $n \geq 1$. Zeige, dass es in $K[X_1, \ldots, X_n]$ une ndlich viele paarweise nicht assoziierte Primelemente gibt.

Hinweis für die restlichen Aufgaben: Verwende den Hilbertschen Nullstellensatz bzw. das Zariski-Lemma.

Aufgabe 3.

Zeige, dass in einer affinen Algebra jedes Radikalideal der Schnitt von maximalen Idealen ist.

Aufgabe 4.

Sei $\mathfrak{m} \subseteq K[X_1,\ldots,X_n]$ ein maximales Ideal. Zeige, dass es $f_i \in K[X_1,\ldots,X_i]$ derart gibt, dass $\mathfrak{m} = (f_1,\ldots,f_n)$ gilt.

(Hinweis: Führe Induktion nach n durch. Zeige, dass $\mathfrak{m}' := \mathfrak{m} \cap K[X_1, \ldots, X_{n-1}]$ wieder maximal ist. Fasse $L' := K[X_1, \ldots, X_{n-1}]/\mathfrak{m}'$ als Unterkörper von $L := K[X_1, \ldots, X_n]/\mathfrak{m}$ auf, und betrachte die Körpererweiterung L|L'.)

Abgabe bis Montag, den 7. November 2011, 10:14 Uhr in die Zettelkästen neben F411.