Übungsblatt 6 zur Algorithmischen Algebraischen Geometrie

Aufgabe 1.

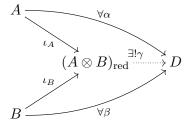
Sei R ein kommutativer Ring und M und N R-Moduln. Zeige:

- a) Ist M erzeugt von $X \subseteq M$ und N von $Y \subseteq N$, so ist $M \otimes_R N$ von $\{x \otimes y \mid x \in X, y \in Y\}$ erzeugt.
- b) Ist X Basis von M und Y Basis von N, so ist $\{x \otimes y \mid x \in X, y \in Y\}$ Basis von $M \otimes_R N$.
- c) Sind A und B affine K-Algebren, so ist auch $A \otimes_K B$ affin.

Aufgabe 2.

Sei A ein kommutativer Ring. A heißt reduziert, falls Nil(A) = (0). Setze $A_{red} := A/Nil(A)$.

- a) Zeige dass A_{red} reduziert ist.
- b) Seien A und B reduzierte affine K-Algebren. Zeige, dass $((A \otimes_K B)_{red}, \iota_A, \iota_B)$ bei kanonischer Wahl von ι_A und ι_B als reduzierte affine K-Algebra die durch folgendes Diagramm dargestellte universelle Eigenschaft erfüllt:



In Worten: Für alle reduzierten affinen K-Algebren D und Algebrenhomomorphismen α und β wie im Diagramm, existiert genau ein Algebrenhomomorphismus γ , für welchen $\alpha = \gamma \circ \iota_A$ und $\beta = \gamma \circ \iota_B$ gilt.

c) Zeige, dass für alle affinen K-Varietäten gilt:

$$K[V \times W] \cong (K[V] \otimes_K K[W])_{\text{red}}$$

Aufgabe 3.

Sei $\varphi: V \to W$ ein Morphismus affiner K-Varietäten und $\varphi^*: K[W] \to K[V]$ der dazu duale Homomorphismus. Zeige oder widerlege durch Gegenbeispiel:

- a) φ injektiv $\Rightarrow \varphi^*$ surjektiv
- b) φ surjektiv $\Rightarrow \varphi^*$ injektiv
- c) φ^* injektiv $\Rightarrow \varphi$ surjektiv
- d) φ^* surjektiv $\Rightarrow \varphi$ injektiv

Abgabe bis Montag, den 28. November 2011, 10:14 Uhr in die Zettelkästen neben F411.