Übungsblatt 10 zur Reellen Algebraischen Geometrie I

Aufgabe 34. Ist (M, \leq) eine geordnete Menge, so nennen wir ein Paar (A, B) von Mengen A und B einen Schnitt von (M, \leq) , wenn $A \cup B = M$ und a < b für alle $a \in A$ und $b \in B$. Sei nun (M, \leq) eine geordnete Untermenge von (M', \leq') (das heißt $M \subseteq M'$ und $a \leq b \iff a \leq' b$ für alle $a, b \in M$). Zeige, dass es für jeden Schnitt (A, B) von (M, \leq) einen Schnitt (A', B') von (M', \leq') gibt mit $A' \cap M = A$ und $B' \cap M = B$.

Aufgabe 35. Sei R ein reell abgeschlossener Körper. Zeige, dass durch die Zuordnungen

$$P \mapsto (\{a \in R \mid a \leq_P X\}, \{b \in R \mid X \leq_P b\})$$

$$\left\{\frac{p}{q} \mid \exists a \in \{-\infty\} \cup A : \exists b \in B \cup \{\infty\} : pq \geq 0 \text{ auf } (a,b)_R\right\} \longleftrightarrow (A,B)$$

eine Bijektion zwischen der Menge der Anordnungen von R(X) und der Menge der Schnitte von R vermittelt wird.

Aufgabe 36. Seien (K, \leq) ein angeordneter Körper und $R := \overline{(K, P)}$ sein reeller Abschluss. Zeige, dass $P \mapsto P \cap K(X)$ eine Bijektion zwischen den Anordnungen von R(X) und den $K_{>0}$ enthaltenden Anordnungen von K(X) definiert.

Aufgabe 37. Sei L|K eine Körpererweiterung und P eine Anordnung von K(X) derart, dass sich die Anordnung $P \cap K$ von K auf L fortsetzen lässt. Zeige, dass sich dann P auf L(X) fortsetzen lässt.

Hinweis: Dies erledigt mit deutlich mehr Theorie als damals verfügbar noch einmal den schwierigsten Teil der ohne solche Hilfsmittel sehr schweren Aufgabe 10.

Aufgabe 38. Sei K ein euklidischer Körper. Schreibe

$$f := 2X_1^4 - 12X_1^3X_2 + 30X_1^2X_2^2 - 36X_1X_2^3 + 17X_2^4 \in K[X_1, X_2]$$

als Summe von Quadraten von Polynomen.

Abgabe bis Donnerstag, den 17. Januar, um 11:44 Uhr in die Zettelkästen neben F411.