Klausur zur Reellen Algebraischen Geometrie I

Es sind keine Hilfsmittel zugelassen. Die maximale Bearbeitungszeit beträgt 120 Minuten. Es sind maximal 120 Punkte zu erreichen. Für jede Aufgabe gibt es 20 Punkte.

Aufgabe 1. Sei K ein euklidischer Körper. Schreibe

$$f := 4X_1^2 + X_1^4 - 4X_1X_2 - 4X_1^2X_2 + 5X_2^2 \in K[X_1, X_2]$$

als Summe von Quadraten von Polynomen.

Aufgabe 2. Sei R ein reell abgeschlossener Körper. Bestimme die genaue Anzahl der positiven und und die genaue Anzahl der negativen Nullstellen folgender Polynome (gezählt ohne Vielfachheiten):

(a)
$$X^5 - 2X^4 + 3X^3 + 9X^2 - X + 5 \in R[X]$$

(b)
$$4X^7 + X^5 + 2X^4 - X^3 + 9X^2 + X + 1 \in R[X]$$

Aufgabe 3. Seien R ein reell abgeschlossener Körper, $b \in R$, $f := X^2 + bX + 1 \in R[X]$ und $g := X \in R[X]$.

- (a) Berechne die Hermite-Form $H(f,g) \in R[T_1,T_2]$ von f bezüglich g.
- (b) Gebe die Hermite-Matrix M(H(f,g)) von f bezüglich g an.
- (c) Für welche b ist die Hermite-Matrix von f bezüglich g positiv definit?
- (d) Für welche b hat f zwei verschiedene positive Nullstellen in R?

Aufgabe 4. Welche der folgenden Aussagen gelten für alle reell abgeschlossenen Körper R? Gebe jeweils einen Beweis oder ein Gegenbeispiel!

- (a) Für jedes $n \in \mathbb{N}$ nimmt jedes Polynom aus $R[X_1, \dots, X_n]$ auf $\{x \in \mathbb{R}^n \mid \sum_{i=1}^n x_i^2 \leq 1\}$ ein Maximum an.
- (b) Für alle $a, b \in R_{>0}$ gibt es ein $N \in \mathbb{N}$ mit $a \leq Nb$ und $b \leq Na$.
- (c) R ist als angeordneter Körper vollständig.

(d) $\forall n \in \mathbb{N} : \forall x \in R \setminus \{0\} : \forall \varepsilon \in R_{>0} : \exists \delta \in R_{>0} : \forall y \in R \setminus \{0\} :$

$$\left(|x-y|<\delta \implies \left|\frac{1}{x^n}-\frac{1}{y^n}\right|<\varepsilon\right)$$

(e) Die Folge $(\frac{1}{n})_{n\in\mathbb{N}}$ konvergiert gegen 0 in R.

Aufgabe 5. Unten finden Sie eine "Beweisskizze" für die wahre Tatsache, dass sich jede Anordnung von $\mathbb{Q}(X)$ auf $\mathbb{R}(X)$ fortsetzen lässt. Kommentieren Sie jeden der Schritte (1)–(8): Wird etwas falsches behauptet? Ist der Schritt nachvollziehbar? Wenn ja, wie kann man ihn detaillieren falls notwendig? Wenn nein, warum ist hier eine ernsthafte Lücke?

"Beweisskizze:" Sei $Q \in \operatorname{sper} \mathbb{Q}(X)$.

- (1) Es ist zu zeigen, dass es ein $P \in \operatorname{sper} \mathbb{R}(X)$ gibt mit $Q = P \cap \mathbb{Q}(X)$.
- (2) Aus der Vorlesung wissen wir, dass

$$\Phi \colon \operatorname{sper} \mathbb{R}(X) \to \{\emptyset, \mathbb{R}\} \cup \{(-\infty, t) \mid t \in \mathbb{R}\} \cup \{(-\infty, t] \mid t \in \mathbb{R}\}$$
$$P \mapsto \{a \in \mathbb{R} \mid a \leq_P X\}$$

bijektiv ist.

- (3) Setze wie in der Vorlesung $P_{-\infty} := \Phi^{-1}(\emptyset)$, $P_{\infty} := \Phi^{-1}(\mathbb{R})$ und $P_{t-} := \Phi^{-1}((-\infty, t))$ sowie $P_{t+} := \Phi^{-1}((-\infty, t])$ für alle $t \in \mathbb{R}$.
- (4) Unter Benutzung der Vollständigkeit des angeordneten Körpers der reellen Zahlen zeigt man leicht, dass $C := \{a \in \mathbb{R} \mid \exists q \in \mathbb{Q} : a \leq_{\mathbb{R}} q \leq_{Q} X\}$ ein Element des Wertebereichs von Φ ist.
- (5) Gilt $C = \emptyset$, so zeigt man leicht $Q = P_{-\infty} \cap \mathbb{Q}(X)$.
- (6) Gilt $C = \mathbb{R}$, so zeigt man leicht $Q = P_{\infty} \cap \mathbb{Q}(X)$.
- (7) Gilt $C = (-\infty, t)$ für ein $t \in \mathbb{R}$, so zeigt man leicht $Q = P_{t-} \cap \mathbb{Q}(X)$.
- (8) Gilt $C = (-\infty, t]$ für ein $t \in \mathbb{R}$, so zeigt man leicht $Q = P_{t+} \cap \mathbb{Q}(X)$.

Aufgabe 6. Für welche $P \in \operatorname{sper} \mathbb{R}[X]$ ist $C_P := (\operatorname{sper} \mathbb{R}[X]) \setminus \{P\}$ eine konstruierbare Teilmenge des reellen Spektrums von $\mathbb{R}[X]$?

Wir wünschen Ihnen viel Spaß mit den Aufgaben und viel Erfolg!