
University of Konstanz Sebastian Gruler
Department of Mathematics and Statistics Maŕıa López Quijorna
Summer Term 2012 Markus Schweighofer

Polynomial Optimization – Computer Project 1

The aim of this project is to solve the polynomial optimization problem

(P) minimize 2x41 + 10x31 + x21x2 + 19x21 − x1x
2
2 + 4x1x2+

14x1 + 2x42 − 10x32 + 19x22 − 14x2 + 11

over x1, x2 ∈ R
subject to x21 + 3x1 − x22 + x2 + 3 ≥ 0

x21 + 2x1 − x22 + 2x2 + 1 ≥ 0

x31 + 3x21 + 2x1 − x32 + 3x22 − 2x2 ≥ 0

using semidefinite programming. You will need a working version of the commercial
system MATLAB1 including the Symbolic Math Toolbox MuPAD2 (e.g., the student
version3 or the version installed in the PhyMa-Pool4). You need to have installed5 the
following MATLAB-packages (cf. Problem Set 1): the modelling language YALMIP6

and at least one of the SDP-solvers SeDuMi7 and SDPT38.

In this project, you have to construct four files where narendra9 must be replaced by
your given name in lowercase letters:

(1) a MuPAD notebook pop1narendra.mn

(2) a MuPAD program pop1narendra.mu

(3) a MATLAB script pop1narendra_constraints.m

(4) a MATLAB script pop1narendra.m

You will first create (1) following our instructions. This will be your potentially first
MuPAD notebook where you can take your first steps with the very nice and elegant
MuPAD language. In the end (1) should be a readable MuPAD notebook that creates

1http://en.wikipedia.org/wiki/MATLAB
2http://en.wikipedia.org/wiki/MuPAD
3http://www.mathworks.com/academia/student_version/
4http://www.math.uni-konstanz.de/fb_seiten/contrib/studium/phyma/phyma_en.php?menu_var=

Studies
5and added to the MATLAB path
6http://users.isy.liu.se/johanl/yalmip/
7http://sedumi.ie.lehigh.edu/
8http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
9http://en.wikipedia.org/wiki/Karmarkar%27s_algorithm

the constraints of a semidefinite program (P1) relaxing (P) and writes them in YALMIP
format to the file (3). In other words, file (3) will be created automatically once your
MuPAD notebook works correctly and is evaluated. MuPAD notebooks can only be
opened but cannot be called from MATLAB scripts. What we finally need is therefore
a MuPAD program. So you will create file (2) by just copying all essential commands
from (1) into (2). The “master” file (3) will therefore first execute (2) which produces
a semidefinite relaxation (P1) of (P) and writes it into (2), then (3) will execute (2) to
define the constraints in the YALMIP format, and finally (3) will tell YALMIP to solve
(P1) using an SDP-solver.

(a) Start MATLAB and add YALMIP and at least one of SeDuMi and SDPT3 to the
MATLAB path.

(b) Set the working directory (“Current Folder”) to the folder where you want to store
your project in.

(c) Create a blank MuPAD notebook by typing mupad in the MATLAB command win-
dow, put a comment with your name in the first line of this notebook. Save the
notebook in your working directory under the name of pop1narendra.mn.

(d) Open MuPAD’s help window and work through the topics

Getting Started→ First steps in MuPAD

Getting Started→ Accessing MuPAD Help

Getting Started→Working with Data Structures→ Sequences

Getting Started→Working with Data Structures→ Lists

Getting Started→Working with Data Structures→ Vectors and Matrices

while experimenting in the notebook.

(e) Now search in the MuPAD help browser for the commands :=, =, [], $, ->, _plus,
map, expand, monomials, lterm, op, nops, matrix, transpose, max, degree, con-
tains, subs and whatever other command you are interested in.

(f) Define the goal function f of (P) and the three polynomials p[1], p[2] and p[3]

defining the constraints of (P).

(g) Define a function mon (using ->) that yields a sequence of all monomials of degree
exactly k when called with a nonnegative integer k.

(h) Define a function vec yielding a column vector of all monomials of degree at most k
when called with a nonnegative integer k.

(i) Define symmetric matrix polynomials P0 ∈ SR[X1, X2]
6×6, P1 ∈ SR[X1, X2]

3×3,
P2 ∈ SR[X1, X2]

3×3 and P3 ∈ SR[X1, X2]
1×1 whose positive semidefiniteness ex-

presses the validity of the (mostly redundant) constraints

(a1 + a2x1 + a3x2 + a4x
2
1 + a5x1x2 + a6x

2
2)

2 ≥ 0

(a1 + a2x1 + a3x2)
2(x21 + 3x1 − x22 + x2 + 3) ≥ 0

(a1 + a2x1 + a3x2)
2(x21 + 2x1 − x22 + 2x2 + 1) ≥ 0

a21(x
3
1 + 3x21 + 2x1 − x32 + 3x22 − 2x2) ≥ 0,

(a1, . . . , a6 ∈ R) confer the lecture and Exercise Sheet 1.

(j) Define the list of monomials from R[X1, X2] appearing somewhere now and another
list of the same length s of variables yi = y[i] (i ∈ {1, . . . , s}).

(k) Define a function that linearizes polynomials (cf. Exercise Sheet 1 and the lecture)
from R[X1, X2] in the sense that it replaces the i-th monomial in our list by the
corresponding yi (except for the constant monomial 1). Use the map function to do
this.

(l) Again using the map function extend this linearization to matrix polynomials.

(m) Store the linearized goal function f in l and the linearized matrix polynomials
P0, . . . , P3 in M0,. . . ,M3.

(n) Add and understand the following lines to your notebook:

use(generate,MATLAB) // load MATLAB function form library generate

MATLAB(l)

MATLAB(M0)

yalmipspec:="y=sdpvar(".nops(monolist).",1); ":

yalmipspec:=yalmipspec.MATLAB(l).MATLAB(M0).MATLAB(M1).MATLAB(M2).MATLAB(M3):

yalmipspec:=stringlib::subs(yalmipspec,"t0"="l"):

yalmipspec:=stringlib::subs(yalmipspec,"zeros"="sdpvar"):

fprint(Unquoted,Text,"pop1narendra_constraints.m", yalmipspec)

(o) Create (2) with your favorite editor (or with the MuPAD or the MATLAB editor).
Copy and paste everything from (1) which is really needed to fulfill the task of
producing (3). Do not copy the things which are nice in a notebook to understand
what is going on (like examples). This helps us to see if you have understood what is
really necessary. Be careful that you have to slightly adapt your syntax to a program
file, e.g. you always have to separate two commands by a semicolon.

(p) Create (4) with your favorite editor and write the following into this file while trying
to understand it using the MATLAB help and the YALMIP wiki.

% Narendra Karmarkar

read(symengine,’pop1narendra.mu’)

pop1narendra_constraints

constraints=set(M0>=0)+set(M1>=0)+set(M2>=0)+set(M3>=0)

solvesdp(constraints,l)

double(l)

double(y(2))

double(y(3))

evalin(symengine,’subs(f,x[1]=-1,x[2]=1)’)

(q) Type pop1narendra in the MATLAB command window! Why can you conclude
that the SDP-relaxation (P1) has solved (at least up to numerical errors) the POP
(P)?

Due by Monday, May 6th, 2012, 5:00 am. The four files (1), (2), (3) and (4)
must be sent attached to an electronic mail to leonid.chatschijan@uni-konstanz.de

where leonid.chatschijan must be replaced by your tutor sebastian.gruler or
maria.lopez-quijorna. Files (1), (2) and (4) must be executable without produc-
ing errors. Note that this must work in any directory so please avoid using pathnames
when specifying filenames. File (3) must be identical with both the file that is produced
by executing (1) and (2), respectively. It is perfectly allowed to collaborate with other
students. However, the finalization, annotation and submission of the project has to be
done by each participant individually. The only file which must be well documented is
(1). The other files need not necessarily contain comments. Comments should be short
but pregnant and in English language. In files (1), (2) and (4) you must specify your
name by a comment which is of the form \\ Narandra Karmarkar and % Narandra

Karmarkar, respectively.
Where it is little effort, you should keep the code sufficiently general so that it can be

easily adapted for future projects, e.g., you should use n instead of 2 by including a line
like

n:=2 // number of variables

in (1) to allow for later increase of the number of variables. Also you are encouraged to
put redundant “pedagogical” code which motivates or explains subsequent more sophis-
ticated code even if it is not necessary for carrying out the project. For example, you
could add the line

x[i]$i=1..n // the variables

which is just there to increase the readibility.
Your project submissions will usually not be discussed during the exercise groups but

individually in the offices of the lecturer and the tutors. You have to be able to explain
your code.

