Übungsblatt 10 zur Linearen Algebra I

Aufgabe 1: Wir nennen

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

ein *magisches Quadrat*, wenn alle Zeilen- und Spaltensummen von A denselben Wert ergeben, das heißt wenn $a_{11}+a_{12}+a_{13}=a_{21}+a_{22}+a_{23}=a_{31}+a_{32}+a_{33}=a_{11}+a_{21}+a_{31}=a_{12}+a_{22}+a_{32}=a_{13}+a_{23}+a_{33}$.

(a) Zeige, dass die Menge V aller magischen Quadrate ein Unterraum von $\mathbb{R}^{3\times 3}$ ist.

(b) Zeige, dass
$$g \colon V \to \mathbb{R}^5$$
, $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \mapsto \begin{pmatrix} a_{11} \\ a_{12} \\ a_{13} \\ a_{21} \\ a_{22} \end{pmatrix}$ ein Isomorphismus ist.

(c) Bestimme eine geordnete Basis \underline{v} von V.

Welche der folgenden Vorschriften definieren

- eine Selbstabbildung,
- sogar einen Vektorraumendomorphismus oder
- gar einen Vektorraumautomorphismus

f von V? Gib jeweils die Matrixdarstellung $M(f,\underline{v})$ von f bezüglich \underline{v} an, sofern die zweite Frage zu bejahen ist.

$$\text{(d)} \ \, \begin{pmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \\ a_{31} \ a_{32} \ a_{33} \end{pmatrix} \mapsto \begin{pmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{22} \ a_{23} \ a_{21} \\ a_{33} \ a_{31} \ a_{32} \end{pmatrix} \qquad \qquad \qquad \text{(g)} \ \, \begin{pmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \\ a_{31} \ a_{32} \ a_{33} \end{pmatrix} \mapsto \begin{pmatrix} a_{11} \ a_{22} \ a_{22} \\ a_{22} \ a_{11} \ a_{22} \\ a_{22} \ a_{21} \ a_{21} \end{pmatrix}$$

$$\begin{pmatrix}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 0 \\
0 & 0 & 0
\end{pmatrix}
\mapsto
\begin{pmatrix}
a_{11} & 0 & 0 \\
0 & a_{11} & 0 \\
0 & 0 & a_{11}
\end{pmatrix}$$

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\mapsto
\begin{pmatrix}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{pmatrix}$$

n-mal

Aufgabe 2: Sei K ein Körper mit $1 + \cdots + 1 \neq 0$ für alle $n \in \mathbb{N}$. Sei $f \in K[X]$ ein Polynom vom Grad $d \in \mathbb{N}_0$. Zeige, dass es eine Basis $\underline{v} = (v_1, \dots, v_d, f)$ von $K[X]_d$ gibt derart, dass die Darstellungsmatrix der formalen Ableitung $D^{(d)} : K[X]_d \to K[X]_d$ oberhalb der Diagonalen Einsen und sonst nur Nullen stehen hat, das heißt

$$M(D^{(d)},\underline{v}) = egin{pmatrix} 0 & 1 & 0 & \dots & 0 \ dots & 0 & 1 & \ddots & dots \ dots & 0 & \ddots & \ddots & dots \ dots & & \ddots & \ddots & 0 \ dots & & & \ddots & \ddots & 0 \ dots & & & & \ddots & 1 \ 0 & \dots & \dots & \dots & 0 \end{pmatrix}.$$

Aufgabe 3: Sei K ein Körper und $a_1, \ldots, a_n \in K$ paarweise verschieden. Zeige, dass dann die Spalten und Zeilen der quadratischen Vandermonde-Matrix

$$\begin{pmatrix} 1 & a_1 & \dots & a_1^{n-1} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ 1 & a_n & \dots & a_n^{n-1} \end{pmatrix} \in K^{n \times n}$$

jeweils eine Basis des K-Vektorraums K^n bilden.

Aufgabe 4: Sei K ein endlicher Körper mit k Elementen und V ein n-dimensionaler K-Vektorraum.

- (a) Wie viele Elemente hat V?
- (b) Wie viele geordnete Basen hat V?
- (c) Wie viele ungeordnete Basen hat V?

Zusatzaufgabe für Interessierte: Es sei K ein endlicher Körper mit #K = k und V ein n-dimensionaler K-Vektorraum.

- (a) Wie viele Unterräume der Dimension d hat V für festes $d \in \{0, \dots, n\}$?
- (b) Wie viele Unterräume hat V insgesamt?

Bei jeder Aufgabe sind bis zu 10 Punkte zu erreichen. Abgabe bis Dienstag, den 14. Januar 2014, um 9:55 Uhr in das Postfach Ihres Tutors in der 4. Etage des F-Gebäudes.