Einführung in die Algebra, Übungsblatt 10, Lösungsvorschlag

Aufgabe 2. Seien $p, q \in \mathbb{P}$ mit $p \neq q$. Zeige $\sqrt{q} \notin \mathbb{Q}(\sqrt{p})$ und bestimme

$$[\mathbb{Q}(\sqrt{p},\sqrt{q}):\mathbb{Q}].$$

Lösungsvorschlag. Wir beweisen zunächst folgende *Hilfsbehauptung*: Sei K ein Körper und $a \in K$ kein Quadrat in K. Dann gilt $[K(\sqrt{a}):K]=2$.

Begründung der Hilfsbehauptung: Als Polynom vom Grad 2 ohne Nullstellen in K, ist X^2-a irreduzibel in K[X]. Nach 4.1.9 ist es daher das Minimalpolynom von \sqrt{a} über K. Wegen 4.1.10 ist der Grad von $K(\sqrt{a})$ über K daher gleich dem Grad dieses Polynoms.

Aus der Hilfsbehauptung folgt sofort $\sqrt{p} \notin \mathbb{Q}$ und daher $[\mathbb{Q}(\sqrt{p}) : \mathbb{Q}] = 2$. Wir nehmen nun $\sqrt{q} \in \mathbb{Q}(\sqrt{p})$ an. Wähle dann $a, b \in \mathbb{Q}$ mit

$$q = (a + b\sqrt{p})^2 = a^2 + b^2p + 2ab\sqrt{p}.$$
 (*)

Wie in Beispiel 4.1.11 ist 1, \sqrt{p} eine Q-Basis von $\mathbb{Q}(\sqrt{p})$. Insbesondere bekommen wir aus (*), dass 2ab=0 und $a^2+b^2p=q$. Es bezeichne v_q die q-adische Bewertung auf Q. Ist nun a=0, so ist $b^2p=q$, also

$$1 = v_q(q) = v_q(b^2p) = 2v_q(b) + \underbrace{v_q(p)}_{=0} \in 2\mathbb{Z}$$

was nicht sein kann. Ist b = 0, so ist $a^2 = q$, also

$$1 = v_q(q) = v_q(a^2) = 2v_q(b) \in 2\mathbb{Z}$$

was ebenfalls nicht sein kann. Folglich ist $\sqrt{q} \notin \mathbb{Q}(\sqrt{p})$.

Um nun den gesuchten Körpergrad zu bestimmen, verwenden wir die Gradformel 4.1.5

$$[\mathbb{Q}(\sqrt{p},\sqrt{q}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{p},\sqrt{q}):\mathbb{Q}(\sqrt{p})]\cdot[\mathbb{Q}(\sqrt{p}):\mathbb{Q}] = 2\cdot 2 = 4.$$