Übungsblatt 6 zur Algorithmischen Algebraischen Geometrie

Aufgabe 1. (3P) (Isomorphie endlicher Varietäten)

Schreibe die Polynome $f:=X_1^2X_2X_3^3-2X_1X_2^2X_3+3X_2X_3+1$, $g:=5X_1^2X_2X_3^3+2X_1X_2^2X_3-3X_2X_3+3$ und $h:=X_1^2X_2X_3^3+2X_1X_2^2X_3-X_2$ aus $\mathbb{Q}[X_1,X_2,X_3]$ bezüglich

- (a) der lexikographischen Ordnung,
- (b) der gradlexikographischen Ordnung und
- (c) der gradrückwärtslexikographischen Ordnung

jeweils so, dass größere Monome weiter links und kleinere Monome weiter rechts stehen. Bestimme jeweils Leitmonom, Leitkoeffizient und Leitterm.

Aufgabe 2. (4P) (Isomorphie von Varietäten)

Zeige:

- (a) Zwei isomorphe affine *K*-Varietäten haben jeweils gleich viele irreduzible Komponenten.
- (b) $\mathbb{A} \ncong \mathbb{A}^2$
- (c) Seien V_1 und V_2 affine K-Untervarietäten von \mathbb{A}^m und W_1 und W_2 affine K-Untervarietäten von \mathbb{A}^n mit $V_1 \cap V_2 = \emptyset$, $W_1 \cap W_2 = \emptyset$, $V_1 \cong W_1$ und $V_2 \cong W_2$. Dann gilt $V_1 \cup V_2 \cong W_1 \cup W_2$.

Aufgabe 3. (3P) (Bijektive Morphismen und Isomorphismen)

Beweise oder widerlege: Ist K = C ein algebraisch abgeschlossener Körper und sind V und W affine K-Varietäten, für die es von V nach W und von W nach V jeweils einen bijektiven Morphismus gibt, so $V \cong W$.

Aufgabe 4. (6P) (Morphismen und Koordinatenringe)

Sei $\varphi: V \to W$ ein Morphismus affiner K-Varietäten und $\varphi^*: K[W] \to K[V]$ der dazu duale K-Algebrenhomomorphismus. Zeige oder widerlege durch ein Gegenbeispiel:

- (a) φ injektiv $\Longrightarrow \varphi^*$ surjektiv
- (b) φ surjektiv $\implies \varphi^*$ injektiv
- (c) φ^* injektiv $\implies \varphi$ surjektiv
- (d) φ^* surjektiv $\implies \varphi$ injektiv

Abgabe bis Mittwoch, den 2. Dezember 2015, 11:44 Uhr in die Zettelkästen neben F411.