§4 Dimensionstheorie

4.1 Transzendenzgrad von Körpererweiterungen und Algebren

In diesem Abschnitt sei stets L|K eine Körpererweiterung und A eine kommutative K-Algebra.

Proposition 4.1.1. Seien $E \subseteq A$ und $F \subseteq A$ mit $E \cap F = \emptyset$. Dann ist $E \cup F$ algebraisch unabhängig $[\to 1.1.11]$ genau dann, wenn E algebraisch unabhängig ist und F in der K[E]-Algebra A algebraisch unabhängig ist.

Beweis. " \Longrightarrow " Sei $E \cup F$ algebraisch unabhängig. Seien $y_1, \ldots, y_m \in F$ paarweise verschieden und $f \in K[E][Y_1, \ldots, Y_m]$ mit $f(y_1, \ldots, y_m) = 0$. Zu zeigen ist f = 0. Wähle paarweise verschiedene $x_1, \ldots, x_n \in E$ mit $f \in K[x_1, \ldots, x_n, Y]$. Wähle $g \in K[X, Y]$ mit $f = g(x_1, \ldots, x_n, Y)$. Wegen $E \cap F = \emptyset$ sind $x_1, \ldots, x_n, y_1, \ldots, y_m \in E \cup F$ paarweise verschieden. Aus $g(x_1, \ldots, x_n, y_1, \ldots, y_m) = f(y_1, \ldots, y_m) = 0$ folgt daher g = 0 und somit f = 0.

Erinnerung 4.1.2. [\rightarrow 1.1.10] (Körperadjunktion) Ist $E \subseteq L$, so ist

$$K(E) := (K[E] \setminus \{0\})^{-1} K[E] = qf(K[E]) \subseteq L$$

der kleinste Unterkörper von L, der $K \cup E$ enthält. Für $b_1, \ldots, b_n \in L$ schreibt man auch $K(b_1, \ldots, b_n)$ statt $K(\{b_1, \ldots, b_n\})$.

Korollar 4.1.3. Seien $E \subseteq L$ und $F \subseteq L$ mit $E \cap F = \emptyset$. Dann ist $E \cup F$ K-algebraisch unabhängig genau dann, wenn E K-algebraisch unabhängig ist.

Beweis. Folgt sofort aus 4.1.1, denn offensichtlich

F ist K(E)-algebraisch unabhängig \iff F ist K[E]-algebraisch unabhängig.

Proposition 4.1.4. [\rightarrow LA6.2.1(b)] Sei $E \subseteq L$. Dann ist E K-algebraisch unabhängig genau dann, wenn kein $x \in E$ algebraisch über $K(E \setminus \{x\})$ ist.

1

Beweis. Sei *E K*-algebraisch unabhängig. Ist dann $x \in E$, so ist nach 4.1.3 $\{x\}$ $K(E \setminus \{x\})$ -algebraisch unabhängig, das heißt x nicht algebraisch über $K(E \setminus \{x\})$.

Sei umgekehrt E K-algebraisch unabhängig. Wir zeigen, dass es $x \in E$ gibt mit x algebraisch über $K(E \setminus \{x\})$. Wähle $f \in K[X_1, \ldots, X_n] \setminus \{0\}$ und $a_1, \ldots, a_n \in L$ mit $f(a_1, \ldots, a_n) = 0$, wobei $n \in \mathbb{N}$ so klein wie möglich gewählt sei. Wir zeigen, dass a_1 algebraisch über $K(a_2, \ldots, a_n)$ ist. Wegen der Minimalität von n gilt $f \notin K[X_2, \ldots, X_n]$, das heißt es gibt $k \in \mathbb{N}$ und $g_0, \ldots, g_k \in K[X_2, \ldots, X_n]$ mit $g_k \neq 0$ derart, dass $f = \sum_{i=0}^k g_i X_1^i$. Wegen der Minimalität von n gilt $g_k(a_2, \ldots, a_n) \neq 0$ und daher

$$a_1^k + \frac{g_{k-1}(a_2,\ldots,a_n)}{g_k(a_2,\ldots,a_n)}a_1^{k-1} + \ldots + \frac{g_0(a_2,\ldots,a_n)}{g_k(a_2,\ldots,a_n)} = 0.$$

Definition 4.1.5. Eine Menge $B \subseteq L$ heißt *Transzendenzbasis* der Körpererweiterung L|K (oder Transzendenzbasis von L über K), falls B K-algebraisch unabhängig und L|K(B) algebraisch ist. Man sagt, $x_1, \ldots, x_n \in L$ bilden eine Transzendenzbasis von L|K, wenn x_1, \ldots, x_n K-algebraisch unabhängig sind $[\rightarrow 1.1.11]$ und $L|K(x_1, \ldots, x_n)$ algebraisch ist.

Satz 4.1.6. [\rightarrow LA6.2.14] Seien $F \subseteq B \subseteq G \subseteq L$ derart, dass F K-algebraisch unabhängig und L|K(G) algebraisch ist. Dann sind äquivalent:

- (a) B ist Transzendenzbasis von L|K
- (b) L|K(B) ist algebraisch, aber L|K(C) ist für kein C mit $F \subseteq C \subset B$ algebraisch.
- (c) B ist K-algebraisch unabhängig, aber kein D mit $B \subset D \subseteq G$ ist K-algebraisch unabhängig.

Beweis. (a) \Longrightarrow (b) Gelte (a) und sei $F \subseteq C \subset B$. Wähle $x \in B \setminus C$. Nach 4.1.4 ist dann x nicht algebraisch über K(C).

(b) ⇒ (c) Gelte (b). Ist $B \subset D \subseteq G$ und wählt man $x \in D \setminus B$, so ist x algebraisch über K(B) und daher D nicht algebraisch unabhängig nach 4.1.2. Noch zu zeigen: B K-algebraisch unabhängig. Nach 4.1.3 reicht es zu zeigen, dass $B \setminus F$ K(F)-algebraisch unabhängig ist. Nach 4.1.4 ist hierzu zu zeigen, dass kein $x \in B \setminus F$ algebraisch über $K(F)((B \setminus F) \setminus \{x\}) = K(B \setminus \{x\})$ ist. Wäre aber ein $x \in B \setminus F$ algebraisch über $K(B \setminus \{x\})$, so würde für $C := B \setminus \{x\}$ gelten: $F \subseteq C \subset B$ und L|K(C) ist wegen der Transitivität der Algebraizität algebraisch, denn L|K(B) ist nach (b) algebraisch und K(B)|K(C) ist algebraisch, weil K(B) = K(C)(x) und x algebraisch über K(C) ist f.

 $(c) \Longrightarrow (a)$ Gelte (c). Zu zeigen: L|K(B) algebraisch. Es genügt zu zeigen, dass jedes $x \in G$ algebraisch über K(B) ist, denn dann sind L|K(G) und K(G)|K(B) und damit auch L|K(B) algebraisch. Sei also $x \in G \setminus B$. Zu zeigen: x algebraisch über K(B). Nach (c) ist $B \cup \{x\}$ K-algebraisch abhängig. Nach 4.1.3 ist daher $\{x\}$ K(B)-algebraisch abhängig, das heißt x algebraisch über K(B).

Korollar 4.1.7. Für $B \subseteq L$ sind äquivalent:

- (a) B ist Transzendenzbasis von L|K.
- (b) B ist minimal bezüglich der Eigenschaft, dass L|K(B) algebraisch ist.
- (c) *B* ist eine maximale *K*-algebraisch unabhängige Teilmenge von *L*.

Satz 4.1.8. Seien $F \subseteq G \subseteq L$ derart, dass F K-algebraisch unabhängig und L|K(G) algebraisch ist. Dann gibt es eine Transzendenzbasis B von L|K mit $F \subseteq B \subseteq G$.

Beweis. Betrachte die durch Inklusion halbgeordnete Menge \mathcal{M} aller K-algebraisch unabhängigen Mengen E mit $F \subseteq E \subseteq G$. Jede Kette in \mathcal{M} hat eine obere Schranke in \mathcal{M} (die leere Kette F und jede andere Kette ihre Vereinigungsmenge). Nach dem Zornschen Lemma [→LA12.2.8] besitzt \mathcal{M} ein maximales Element B. Nach 4.1.6(c) ist B eine Transzendenzbasis von L|K. \Box

Korollar 4.1.9. Jede Körpererweiterung besitzt eine Transzendenzbasis.

Proposition 4.1.10. Sei F ein Zwischenkörper von L|K, B eine Transzendenzbasis von F|K und C eine von L|F. Dann ist $B \cap C = \emptyset$ und $B \cup C$ eine Transzendenzbasis von L|K.

Beweis. $B \cap C = \emptyset$ ist trivial. Da B K-algebraisch unabhängig und C F-algebraisch unabhängig insbesondere K(B)-algebraisch unabhängig ist, ist nach 4.1.3 $B \cup C$ K-algebraisch unabhängig. Es bleibt zu zeigen, dass $L|K(B \cup C)$ algebraisch ist. Da L algebraisch über F(C) ist, reicht es zu zeigen, dass F(C) algebraisch über $K(B \cup C)$ ist Hierfür reicht es zu zeigen, dass F algebraisch über K(B) ist, was vorausgesetzt ist. \Box

Proposition 4.1.11 (Austauschlemma). $[\rightarrow LA6.2.5]$ Sei x_1, \ldots, x_n eine Transzendenzbasis von L|K. Sei $y \in L$ nicht algebraisch über $K(x_2, \ldots, x_n)$. Dann ist auch y, x_2, \ldots, x_n eine Transzendenzbasis von L|K.

Beweis. Da x_2, \ldots, x_n eine Transzendenzbasis von $K(x_2, \ldots, x_n)|K$ ist, kann man durch Ersetzen von K durch $K(x_2, \ldots, x_n)$ wegen $4.1.10 \times n = 1$ annehmen. Dann ist zu zeigen, dass x_1 algebraisch über K(y) ist. $\times y \neq x_1$. Da y algebraisch über $K(x_1)$ ist, sind nach $4.1.4 \times x_1$ und y K-algebraisch abhängig. Nach 4.1.3 ist daher $\{y\}$ K-algebraisch abhängig oder $\{x_1\}$ K(y)-algebraisch abhängig, das heißt y algebraisch über K oder x_1 über K(y).

Satz 4.1.12 (Austauschssatz). [\rightarrow LA6.2.6] Sei x_1, \ldots, x_n eine Transzendenzbasis von L|K und seien $y_1, \ldots, y_m \in L$ K-algebraisch unabhängig. Dann gibt es paarweise verschiedene $i_1, \ldots, i_m \in \{1, \ldots, n\}$ so, dass x_1, \ldots, x_n nach Ersetzen von x_{i_j} durch y_j $(j \in \{1, \ldots, m\})$ immer noch eine Transzendenzbasis von L|K bilden. Insbesondere gilt $m \leq n$.

Beweis. Induktion nach m.

Im Fall m = 0 ist nichts zu zeigen.

 $\underline{m}=\underline{1}$ Da y nicht algebraisch über K ist, gilt $n\geq 1$. Wähle $s\in \{1,\ldots,n\}$ minimal derart, dass y algebraisch über $K(x_1,\ldots,x_s)$ ist. Dann ist y im (relativen) algebraischen Abschluss F von $K(x_1,\ldots,x_s)$ in L und x_1,\ldots,x_s ist eine Transzendenzbasis von F. Nach dem Austauschlemma 4.1.11 ist x_1,\ldots,x_{s-1},y eine Transzendenzbasis von F|K. Wir behaupten, dass $x_1,\ldots,x_{s-1},y,x_{s+1},\ldots,x_n$ eine Transzendenzbasis von L|K ist. Dies folgt mit 4.1.10, sofern x_{s+1},\ldots,x_n eine Transzendenzbasis von L|F ist. Wegen $F(x_{s+1},\ldots,x_n)\supseteq K(x_1,\ldots,x_s,x_{s+1},\ldots,x_n)$ ist sicher $L|F(x_{s+1},\ldots,x_n)$ algebraisch. Um zu zeigen, dass x_{s+1},\ldots,x_n F-algebraisch unabhängig sind, wenden wir 4.1.4 an: Sei $i\in \{s+1,\ldots,n\}$. Wäre x_i algebraisch über $F(\{x_{s+1},\ldots,x_n\}\setminus\{x_i\})$, so auch über $K(\{x_1,\ldots,x_n\}\setminus\{x_i\})$ (denn mit $F|K(x_1,\ldots,x_n\}\setminus\{x_i\})$ über $K(x_1,\ldots,x_s)(\{x_{s+1},\ldots,x_n\}\setminus\{x_i\})$ über $K(x_1,\ldots,x_s)(\{x_{s+1},\ldots,x_n\}\setminus\{x_i\})$ ist auch $F(\{x_{s+1},\ldots,x_n\}\setminus\{x_i\})$ über $K(x_1,\ldots,x_s)$ ($\{x_{s+1},\ldots,x_n\}\setminus\{x_i\}$) ist auch $\{x_i\}$ algebraisch), was wegen 4.1.4 nicht möglich ist.

 $m-1 \rightarrow m \quad (m \ge 2)$ Nach IV und Umnummerierung gilt $n \ge m-1$ und

$$y_1,\ldots,y_{m-1},x_m,\ldots,x_n$$

bilden eine Transzendenzbasis von L|K. Nach 4.1.3 ist dann x_m,\ldots,x_n eine Transzendenbasis von $L|K(y_1,\ldots,y_{m-1})$ und y_m $K(y_1,\ldots,y_{m-1})$ -algebraisch unabhängig. Hier sieht man $n\geq m$. Mit dem Fall m=1 folgt, dass $\times y_m,x_{m+1},\ldots,x_n$ eine Transzendenzbasis von $L|K(y_1,\ldots,y_{m-1})$ ist. Mit 4.1.10 folgt, dass $y_1,\ldots,y_{m-1},y_m,x_{m+1},\ldots,x_n$ eine Transzendenzbasis von L|K ist.

Korollar 4.1.13. Seien B und C Transzendenzbasen von L|K. Dann sind entweder B und C beide unendlich oder B und C beide endlich mit #B = #C.

Definition 4.1.14. Der *Transzendenzgrad* von *L*|*K* ist definiert durch

$$\operatorname{trdeg}(L|K) := \#B \in \mathbb{N}_0 \cup \{\infty\}$$

für eine beliebige Transzendenzbasis B von L|K.

Proposition 4.1.15. Ist F ein Zwischenkörper von L|K, so

$$trdeg(L|K) = trdeg(L|F) + trdeg(F|K),$$

wobei man $\infty + n = n + \infty = \infty$ setzt für alle $n \in \mathbb{N}_0 \cup \{\infty\}$.

Beweis. Direkt aus 4.1.10.

Proposition 4.1.16. Seien $n := \operatorname{trdeg}(L|K) < \infty$ und $x_1, \dots, x_n \in L$. Dann sind äquivalent:

- (a) x_1, \ldots, x_n bilden eine Transzendenzbasis von L|K.
- (b) $L|K(x_1,...,x_n)$ ist algebraisch.

(c) x_1, \ldots, x_n sind K-algebraisch unabhängig.

Beweis.
$$(a) \Longrightarrow (b)$$
 und $(a) \Longrightarrow (c)$ sind trivial. $(b) \Longrightarrow (a)$ und $(c) \Longrightarrow (a)$ folgen aus 4.1.8 und 4.1.13.

Definition 4.1.17. Der Transzendenzgrad der K-Algebra A ist definiert durch

trdeg
$$A := \sup\{n \in \mathbb{N}_0 \mid \text{es gibt } K\text{-algebraisch unabhängige } x_1, \dots, x_n \in A\}$$

 $\in \{-1\} \cup \mathbb{N}_0 \cup \{\infty\},$

wobei das Supremum in der geordneten Menge $\{-1\} \cup \mathbb{N}_0 \cup \{\infty\}$ genommen wird.

Bemerkung 4.1.18. trdeg $A = -1 \iff A = \{0\} \iff 1 = 0$ in A, denn für n := 0 gilt

trdeg
$$A = -1 \iff \emptyset$$
 ist algebraisch abhängig in A

$$\iff \exists f \in K^{\times} = K[X_1, \dots, X_n] \setminus \{0\} : f \cdot 1_A = 0_A \text{ in } A$$

$$\iff 1 = 0 \text{ in } A.$$

Beispiel 4.1.19. In A := K[X,Y,Z]/(XZ,YZ) sind $x := \overline{X}$ und $y := \overline{Y}$ algebraisch unabhängig, denn ist $f \in K[X,Y]$ mit f(x,y) = 0, so gibt es $g,h \in K[X,Y,Z]$ mit f = gXZ + hYZ und man kann Z durch 0 substituieren, um f = 0 zu erhalten. Es gibt kein Element $a \in A$ derart, dass x,y,a algebraisch unabhängig sind, denn man könnte a = p(x,y,z) für ein $p \in K[X,Y,Z]$ schreiben, wobei $z := \overline{Z}$, und hätte für $f := XYZ - XYp(X,Y,0) \in K[X,Y,Z] \setminus \{0\}$

$$f(x,y,a) = xyp(x,y,z) - xyp(x,y,0) \stackrel{xz=0}{\underset{yz=0}{=}} xyp(x,y,0) - xyp(x,y,0) = 0.$$

Auch z ist algebraisch unabhängig in A, denn ist $f \in K[Z]$ mit f(z) = 0, so gibt es $g,h \in K[X,Y,Z]$ mit f = gXZ + hYZ und man kann X und Y durch 0 substituieren, um f = 0 zu erhalten. Wieder gibt es kein Element $a \in A$ derart, dass z,a algebraisch unabhängig sind, denn man könnte a = p(x,y,z) für ein $p \in K[X,Y,Z]$ schreiben und hätte für $f := ZT - Zp(0,0,Z) \in K[T,Z] \setminus \{0\}$, dass

$$f(a,z) = zp(x,y,z) - zp(0,0,z) \stackrel{\substack{xz=0 \\ =}}{=} zp(0,0,z) - zp(0,0,z) = 0.$$

Proposition 4.1.20. [\rightarrow 1.4.23(b)] In einem kommutativen Ring enthält jedes Primideal ein minimales Primideal.

Beweis. Sei R ein kommutativer Ring und $\mathfrak{p}\subseteq R$ ein Primideal. Betrachte die durch Inklusion halbgeordnete Menge \mathscr{M} aller Primideal $\mathfrak{q}\subseteq R$ mit $\mathfrak{q}\subseteq \mathfrak{p}$. Jede Kette in \mathscr{M} hat eine untere Schranke in \mathscr{M} . Sei nämlich $\mathscr{C}\subseteq \mathscr{M}$ eine Kette. Falls $\mathscr{C}=\varnothing$, so ist \mathfrak{p} eine untere Schranke von \mathscr{C} . Sei also $\mathscr{C}\neq 0$. Wir behaupten, dass das Ideal $\mathfrak{q}:=\bigcap\mathscr{C}\subseteq\mathfrak{p}$ ein Primideal und damit eine untere Schranke von \mathscr{C} ist. Es ist klar, dass $1\notin\mathfrak{q}$. Seien nun $a,b\in R$ mit $ab\in\mathfrak{q}$ und $a\notin\mathfrak{q}$. Zu zeigen: $b\in\mathfrak{q}$. Wegen $a\notin\mathfrak{q}$ gibt es $I\in\mathscr{C}$ mit $a\notin I$. Sei $J\in\mathscr{C}$. Zu zeigen: $b\in J$. Wegen $ab\in\mathfrak{q}\subseteq I$ und $a\notin I$ gilt $b\in I$. Daher sind wir fertig, falls $I\subseteq J$. Gelte also nun $I\not\subseteq J$. Da \mathscr{C} eine Kette ist, gilt dann $J\subseteq I$. Wegen $ab\in\mathfrak{q}\subseteq J$ und $a\notin J$ (denn $a\notin I$) gilt $b\in J\subseteq I$.

Proposition 4.1.21. Sei B ein Unterring des kommutativen Ringes R und \mathfrak{p} ein minimales Primideal von B. Dann gibt es ein minimales Primideal \mathfrak{q} von R mit $\mathfrak{p} = \mathfrak{q} \cap B$.

Beweis. $S := B \setminus \mathfrak{p}$ ist eine multiplikative Teilmenge von B und damit auch von B mit $0 \notin S$. Daher gibt es ein Primideal \mathfrak{q} von B mit $\mathfrak{q} \cap S = \emptyset$, welches nach 4.1.20 E als minimal angenommen weden kann. Es gilt $\mathfrak{q} \cap B \subseteq B \setminus S = \mathfrak{p}$. Da $\mathfrak{q} \cap B$ ein Primideal von B ist, gilt wegen der Minimalität von B0, dass B1 B2 B3. □

Lemma 4.1.22. Seien $n \in \mathbb{N}_0$ und $x_1, \ldots, x_n \in A$ algebraisch unabhängig in A. Dann gibt es ein minimales Primideal \mathfrak{p} von A derart, dass $\overline{x_1}^{\mathfrak{p}}, \ldots, \overline{x_n}^{\mathfrak{p}}$ algebraisch unabhängig in A/\mathfrak{p} sind.

Beweis. $K[x_1,...,x_n]$ ist als Polynomring über einem Körper ein Integritätsring. Nach 4.1.21 gibt es also ein minimales Primideal \mathfrak{p} von A mit $\mathfrak{p} \cap K[x_1,...,x_n]=(0)$. Sei schließlich $f \in K[X_1,...,X_n]$ mit $f(\overline{x_1}^{\mathfrak{p}},...,\overline{x_n}^{\mathfrak{p}})=0$ in A/\mathfrak{p} . Zu zeigen: f=0. Wir haben $\overline{f(x_1,...,x_n)}^{\mathfrak{p}}=f(\overline{x_1}^{\mathfrak{p}},...,\overline{x_n}^{\mathfrak{p}})=0$ und damit

$$f(x_1,\ldots,x_n)\in\mathfrak{p}\cap K[x_1,\ldots,x_n]=(0).$$

Da x_1, \ldots, x_n algebraisch unabhängig in A sind, folgt f = 0.

Lemma 4.1.23. Die K-Algebra A sei ein Integritätsring, es seien $n \in \mathbb{N}$ und

$$x_1,\ldots,x_n,y\in A\setminus\{0\}$$

derart, dass $\frac{x_1}{y}, \dots, \frac{x_n}{y}$ *K*-algebraisch unabhängig in qf(*A*) sind. Dann sind x_1, \dots, x_n in *A* algebraisch unabhängig oder es gibt ein $i \in \{1, \dots, n\}$ derart, dass

$$x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n$$

in *A* algebraisch unabhängig sind.

Beweis. \times *K* \subseteq *A* (sonst tausche *K* durch sein Bild unter *K* \hookrightarrow *A*, $a \mapsto a \cdot 1$ aus)

Fall 1 *y* algebraisch über *K*

Dann ist $\frac{x_1}{y}, \dots, \frac{x_n}{y}$ eine Transzendenzbasis von

$$K\left(\frac{x_1}{y},\ldots,\frac{x_n}{y},y\right)=K(x_1,\ldots,x_n,y)$$

über K. Nach 4.1.8 und 4.1.13 enthält $\{x_1, \ldots, x_n, y\}$ eine n-elementige Transzendenzbasis von $K(x_1, \ldots, x_n, y) | K$, die notwendig $\{x_1, \ldots, x_n\}$ sein muss, da y algebraisch über K ist. Also sind x_1, \ldots, x_n in A algebraisch unabhängig.

Fall 2 y nicht algebraisch über K

<u>Fall 2.1</u> $\frac{x_1}{y}, \dots, \frac{x_n}{y}, y$ sind algebraisch unabhängig in *A*

Analog zu Fall 1 zeigt man dann, dass sogar x_1, \ldots, x_n, y algebraisch unabhängig in A sind.

<u>Fall 2.2</u> $\frac{x_1}{y}, \dots, \frac{x_n}{y}, y$ sind algebraisch abhängig in *A* Nach 4.1.6(c) ist dann $\frac{x_1}{y}, \dots, \frac{x_n}{y}$ eine Transzendenzbasis von

$$L := K\left(\frac{x_1}{y}, \dots, \frac{x_n}{y}, y\right) = K(x_1, \dots, x_n, y)$$

über K. Nach 4.1.8 und 4.1.13 gibt es eine n-elementige Teilmenge von $\{x_1, \ldots, x_n, y\}$, die Transzendenzbasis von L|K und damit algebraisch unabhängig in A ist.

Satz 4.1.24.

trdeg
$$A = \sup\{\operatorname{trdeg}(\operatorname{qf}(A/\mathfrak{p})|K) \mid \mathfrak{p} \text{ Primideal von } A\}$$

= $\sup\{\operatorname{trdeg}(\operatorname{qf}(A/\mathfrak{p})|K) \mid \mathfrak{p} \text{ minimales Primideal von } A\}$
 $\in \{-1\} \cup \mathbb{N}_0 \cup \{\infty\}$

Beweis.

$$\begin{split} \operatorname{trdeg} A &\overset{4.1.22}{\leq} \sup \{\operatorname{trdeg}(\operatorname{qf}(A/\mathfrak{p})|K) \mid \mathfrak{p} \text{ minimales Primideal von } A\} \\ &\overset{\operatorname{trivial}}{\leq} \sup \{\operatorname{trdeg}(\operatorname{qf}(A/\mathfrak{p})|K) \mid \mathfrak{p} \text{ Primideal von } A\} \\ &\overset{4.1.23}{\leq} \operatorname{trdeg} A \end{split}$$

Korollar 4.1.25. Sei $E \subseteq A$ mit A = K[E]. Dann

trdeg $A = \sup\{n \in \mathbb{N}_0 \mid \text{es gibt } K\text{-algebraisch unabhängige } x_1, \dots, x_n \in E\}$ $\in \{-1\} \cup \mathbb{N}_0 \cup \{\infty\}.$

Beweis. "≥" ist trivial lauf Definition 4.1.17.

"="" Nach 4.1.24 genügt es für jedes Primideal $\mathfrak p$ von A zu zeigen, dass

 $\operatorname{trdeg}(\operatorname{qf}(A/\mathfrak{p})|K) \leq \sup\{n \in \mathbb{N}_0 \mid \text{es gibt } K\text{-algebraisch unabhängige } x_1, \dots, x_n \in E\}.$

Sei also $\mathfrak p$ ein Primideal von A. Wegen A = K[E] gilt $A/\mathfrak p = K[\{\overline{x}\mathfrak p \mid x \in E\}]$ und $\operatorname{qf}(A/\mathfrak p) = K(\{\overline{x}\mathfrak p \mid x \in E\})$. Nach 4.1.8 enthält $\{\overline{x}\mathfrak p \mid x \in E\}$ eine Transzendenzbasis von $\operatorname{qf}(A/\mathfrak p)|K$. Wählt man für jedes Element dieser Transzendenzbasis einen Vertreter aus E, so erhält man eine K-algebraisch unabhängige Teilmenge von E.

Beispiel 4.1.26. Seien A, x, y, z wie in 4.1.19. Wegen A = K[x, y, z] und 4.1.25 besagen die Beobachtungen aus 4.1.19, dass trdeg A = 2.

Erinnerung 4.1.27. [\rightarrow Z2.1.2] Sei B ein Unterring des kommutativen Ringes R. Dann heißt ein $x \in R$ ganz über B, wenn es ein normiertes $f \in B[X]$ gibt mit f(x) = 0. Es heißt R ganz über B, wenn jedes Element von R ganz über B ist.

Bemerkung 4.1.28. Sei B eine K-Unteralgebra von A. Dann trdeg $B \leq \operatorname{trdeg} A$.

Korollar 4.1.29. Sei B eine K-Unteralgebra von A und A ganz über B. Dann trdeg B = trdeg A.

Beweis. $"\le"$ ist trivial nach 4.1.28.

" \geq " Mit 4.1.24 reicht es zu zeigen, dass es zu jedem Primideal $\mathfrak p$ von A ein Primideal $\mathfrak q$ von B gibt mit trdeg(qf($A/\mathfrak p$)|K) = trdeg(qf($B/\mathfrak q$)|K). Sei also $\mathfrak p$ ein Primideal von A. Setze $\mathfrak q:=\mathfrak p\cap B$. Nach Homomorphiesatz haben wir eine kanonische Einbettung $B/\mathfrak q\hookrightarrow A/\mathfrak p$ von K-Algebren, die man eindeutig zu einem K-Homomorphismus qf($B/\mathfrak q$) \hookrightarrow qf($A/\mathfrak p$) erweitern kann vermöge dessen qf($A/\mathfrak p$)| qf($B/\mathfrak q$) eine Körpererweiterung ist. Da A über B ganz ist, ist auch $A/\mathfrak p$ über $B/\mathfrak q$ ganz. Damit ist jedes Element von $A/\mathfrak p$ algebraisch über qf($B/\mathfrak q$) und daher qf($A/\mathfrak p$)| qf($B/\mathfrak q$) algebraisch. Mit 4.1.15 folgt trdeg(qf($A/\mathfrak p$)|K) = 0 + trdeg(qf($B/\mathfrak q$)|K).

Korollar 4.1.30. Sei $S \subseteq A$ multiplikativ ohne Nullteiler. Dann

$$\operatorname{trdeg}(S^{-1}A) = \operatorname{trdeg}(A).$$

Beweis. " \geq " folgt aus 4.1.28, da $A \subseteq S^{-1}A$.

" \leq " Nach 4.1.24 reicht es zu zeigen, dass es zu jedem Primideal $\mathfrak p$ von $S^{-1}A$ ein Primideal $\mathfrak q$ von A gibt mit trdeg(qf($(S^{-1}A)/\mathfrak p)|K$) = trdeg(qf($A/\mathfrak q$)|K). Sei also $\mathfrak p$ ein Primideal von $S^{-1}A$. Dann gilt $\mathfrak p=S^{-1}\mathfrak q$ für das Primideal $\mathfrak q:=\mathfrak p\cap A$ von A mit $\mathfrak q\cap S=\emptyset$. Nach Homomorphiesatz haben wir eine kanonische Einbettung $A/\mathfrak q\hookrightarrow S^{-1}A/\mathfrak p$, die man eindeutig zu einem K-Homomorphismus qf($A/\mathfrak q$) \hookrightarrow qf($S^{-1}A/\mathfrak p$) erweitern kann, der aber surjektiv ist, wie man sich leicht überlegt. Also

$$\operatorname{qf}(A/\mathfrak{q}) \cong_K \operatorname{qf}(S^{-1}A/\mathfrak{p}).$$

Bemerkung 4.1.31. Ist *I* ein Ideal von *A*, so $trdeg(A/I) \le trdeg(A)$.

Korollar 4.1.32. Sei $S \subseteq A$ multiplikativ und A_S die Lokalisierung von A nach S. Dann $trdeg(A_S) \le trdeg(A)$.

4.2 Krulldimension von Ringen [Wolfgang Krull *1899 +1971]

In diesem Abschnitt sei stets A ein kommutativer Ring.

Definition 4.2.1. [\rightarrow 4.1.17] Die *Krulldimension* des Ringes *A* ist definiert durch

 $\dim A := \sup\{n \in \mathbb{N}_0 \mid \text{es gibt Primideale } \mathfrak{p}_0 \subset \ldots \subset \mathfrak{p}_n \subset A\} \in \{-1\} \cup \mathbb{N}_0 \cup \{\infty\},$

wobei das Supremum in der geordneten Menge $\{-1\} \cup \mathbb{N}_0 \cup \{\infty\}$ genommen wird.

Bemerkung 4.2.2. (a) dim $A = -1 \iff A = \{0\} \iff 1 = 0$ in A, denn ist $A \neq \{0\}$, so besitzt A ein Primideal (sogar ein maximales Ideal).

(b) Ist A Integritätsring, so

$$\dim A = 0 \iff (0)$$
 maximales Ideal in $A \iff A$ Körper.

(c) Ist A ein Hauptidealring, der kein Körper ist, dann dim A = 1.

Lemma 4.2.3. Seien K ein Körper, A eine kommutative K-Algebra, $n \in \mathbb{N}_0$, $\mathfrak{p}_0, \ldots, \mathfrak{p}_n$ Primideale von A mit $\mathfrak{p}_0 \subset \ldots \subset \mathfrak{p}_n$ und $x_1, \ldots, x_n \in A$ mit $x_i \in \mathfrak{p}_i \setminus \mathfrak{p}_{i-1}$ für $i \in \{1, \ldots, n\}$. Dann sind x_1, \ldots, x_n algebraisch unabhängig in A.

Beweis. Induktion nach n.

 $\underline{n=0}$ Da 1 ∉ \mathfrak{p}_0 gilt 1 ≠ 0 in A, das heißt \emptyset ist algebraisch unabhängig in A [$\to 4.1.18$].

 $n-1 \rightarrow n \ (n \in \mathbb{N})$ Anwendung der Induktionsvoraussetzung auf

$$(0) = \mathfrak{p}_1/\mathfrak{p}_1 \subset \mathfrak{p}_2/\mathfrak{p}_1 \subset \ldots \subset \mathfrak{p}_n/\mathfrak{p}_1 \text{ in } A/\mathfrak{p}_1 \qquad \text{und} \qquad \overline{x_2}\mathfrak{p}_1, \ldots, \overline{x_n}\mathfrak{p}_1 \in A/\mathfrak{p}_1$$

liefert, dass $\overline{x_2}^{\mathfrak{p}_1}, \ldots, \overline{x_n}^{\mathfrak{p}_1}$ algebraisch unabhängig in A/\mathfrak{p}_1 sind. Sei nun $f \in K[\underline{X}] \setminus \{0\}$ mit $f(x_1, \ldots, x_n) \in \mathfrak{p}_0$. Es reicht, $g \in K[\underline{X}] \setminus \{0\}$ mit $\deg g < \deg f$ und $g(x_1, \ldots, x_n) \in \mathfrak{p}_0$ zu finden. Schreibe $f = X_1g + h$ mit $g \in K[\underline{X}]$ und $h \in K[X_2, \ldots, X_n]$. Dann $h(\overline{x_2}^{\mathfrak{p}_1}, \ldots, \overline{x_n}^{\mathfrak{p}_1}) = f(0, \overline{x_2}^{\mathfrak{p}_1}, \ldots, \overline{x_n}^{\mathfrak{p}_1}) \stackrel{x_1 \in \mathfrak{p}_1}{=} f(\overline{x_1}^{\mathfrak{p}_1}, \ldots, \overline{x_n}^{\mathfrak{p}_1}) = \overline{f(x_1, \ldots, x_n)}^{\mathfrak{p}_1} = 0$ in A/\mathfrak{p}_1 und daher h = 0. Also $x_1g(x_1, \ldots, x_n) = f(x_1, \ldots, x_n) \in \mathfrak{p}_0$ und wegen $x_1 \notin \mathfrak{p}_0$ dann $g(x_1, \ldots, x_n) \in \mathfrak{p}_0$. Beachte $g \neq 0$, da sonst f = 0.

Satz 4.2.4. Sei K ein Körper und A eine kommutative K-Algebra. Dann dim $A \leq \operatorname{trdeg} A$.

Lemma 4.2.5. Sei K ein Unterring des Körpers L und L ganz über K. Dann ist auch K ein Körper.

Beweis. Sei
$$x \in K \setminus \{0\}$$
. Zu zeigen: $x \in K^{\times}$. Wähle $n \in \mathbb{N}$ und $a_1, \ldots, a_n \in K$ mit $\left(\frac{1}{x}\right)^n + a_1\left(\frac{1}{x}\right)^{n-1} + \ldots + a_n = 0$. Dann $x(-(a_1 + a_2x + \ldots + a_nx^{n-1})) = 1$.

Lemma 4.2.6. Sei A ein Unterring des kommutativen Ringes B, sei B ganz über A und A habe genau ein maximales Ideal $\mathfrak p$ (das heißt A ist lokal $[\to Z2.6.1]$). Dann gilt für jedes maximale Ideal $\mathfrak m$ von B, dass $\mathfrak m \cap A = \mathfrak p$.

Beweis. Wende 4.2.5 auf $A/(\mathfrak{m} \cap A) \hookrightarrow B/\mathfrak{m}$, um zu sehen, dass $\mathfrak{m} \cap A$ ein maximales Ideal von A ist.

Proposition 4.2.7 ("Lying over"). Sei A ein Unterring des kommutativen Ringes B und B ganz über A. Sei $\mathfrak p$ ein Primideal von A. Dann gibt es ein Primideal $\mathfrak q$ von B mit $\mathfrak p = \mathfrak q \cap A$.

Beweis. $S := A \setminus \mathfrak{p}$ ist eine multiplikative Teilmenge von A und von B. Betrachte die Lokalisierungen A_S und B_S von A und B nach S und den Homomorphismus

$$A_S \to B_S$$
, $\frac{\overline{a}}{\overline{s}} \to \frac{\overline{a}}{\overline{s}} \ (a \in A, s \in S)$.

Dieser Homomorphismus ist injektiv und wir können A_S als Unterring von B_S sehen. Man sieht leicht (direktes Argument oder mit Z2.1.10), dass B_S ganz über A_S ist. Da die zu S disjunkten Primideale von A genau den Primidealen von A_S entsprechen, hat A_S genau ein maximales Ideal, nämlich $\overline{S}^{-1}\overline{\mathfrak{p}}$. Wähle ein maximales Ideal von B_S . Dieses ist von der Form $\overline{S}^{-1}\overline{\mathfrak{q}}$ für ein Primideal \mathfrak{q} von B mit $\mathfrak{q} \cap S = \emptyset$ und nach 4.2.6 gilt $\overline{S}^{-1}\overline{\mathfrak{q}} \cap A_S = \overline{S}^{-1}\overline{\mathfrak{p}}$. Schließlich gilt für $x \in A$ einerseits

$$\overline{x} \in \overline{S}^{-1}\overline{\mathfrak{q}} \cap A_S \iff \overline{x} \in \overline{S}^{-1}\overline{\mathfrak{q}}$$

$$\iff \exists q \in \mathfrak{q} : \exists s \in S : \overline{xs} = \overline{q}$$

$$\iff \exists q \in \mathfrak{q} : \exists s, t \in S : xst = qt \iff_{s = t-1}^{s, t \notin \mathfrak{q}} x \in \mathfrak{q}$$

und andererseits analog $\overline{x} \in \overline{S}^{-1}\overline{\mathfrak{p}} \iff x \in \mathfrak{p}$. Es folgt also $\mathfrak{p} = \mathfrak{q} \cap A$.

Proposition 4.2.8 ("Going up"). Sei A ein Unterring des kommutativen Ringes B, B ganz über A, $\mathfrak p$ ein Primideal von A und I ein Ideal von B mit $I \cap A \subseteq \mathfrak p$. Dann gibt es ein Primideal $\mathfrak q$ von B mit $I \subseteq \mathfrak q$ und $\mathfrak p = \mathfrak q \cap A$.

Beweis. Gehe von $A \subseteq B$ über zu $A/(I \cap A) \hookrightarrow B/I$ und wende 4.2.7 an.

Bemerkung 4.2.9. (a) In 4.2.8 ist die Voraussetzung $I \cap A \subseteq \mathfrak{p}$ offensichtlich unverzichtbar, denn

$$(I \subseteq \mathfrak{q} \& \mathfrak{p} = \mathfrak{q} \cap A) \implies I \cap A \subseteq \mathfrak{q} \cap A = \mathfrak{p}.$$

(b) "Lying over" ist der Spezialfall von "Going up" mit I = (0).

Lemma 4.2.10. Sei A ein Unterring des Integritätsrings B und qf(B) algebraisch über qf(A) (zum Beispiel B ganz über A). Dann gilt für jedes Ideal $I \neq (0)$ von B, dass $I \cap A \neq (0)$.

Beweis. Sei $x \in B \setminus \{0\}$. Zu zeigen: $(x) \cap A \neq (0)$. Offenbar gibt es $a_0, \ldots, a_n \in A$ mit $a_n x^n + \ldots + a_1 x + a_0 = 0$ mit $a_0 \neq 0$.

Proposition 4.2.11. [\rightarrow 4.2.5] Sei A ein Unterring des Integritätsrings B und B ganz über A. Dann A Körper $\iff B$ Körper.

Beweis. " \Leftarrow " 4.2.5 " \Rightarrow " Nach 4.2.10 sind (0) und *B* die einzigen Ideale von *B*.

Proposition 4.2.12. Sei A ein Unterring des kommutativen Ringes B und B ganz über A. Seien \mathfrak{p} und \mathfrak{q} Primideale von B mit $\mathfrak{p} \subset \mathfrak{q}$. Dann $\mathfrak{p} \cap A \subset \mathfrak{q} \cap A$.

Beweis. $\times \mathfrak{p} = (0)$ (sonst gehe von $A \subseteq B$ zu $A/(\mathfrak{p} \cap A) \hookrightarrow B/\mathfrak{p}$ über). Wende nun 4.2.10 an.

Satz 4.2.13. Sei *A* ein Unterring des kommutativen Ringes *B* und *B* ganz über *A*.

- (a) Sind $n \in \mathbb{N}_0$ und $\mathfrak{p}_0, \ldots, \mathfrak{p}_n$ Primideale von A mit $\mathfrak{p}_0 \subset \ldots \subset \mathfrak{p}_n$, so gibt es Primideale $\mathfrak{q}_0, \ldots, \mathfrak{q}_n$ von B mit $\mathfrak{q}_0 \subset \ldots \subset \mathfrak{q}_n$ und $\mathfrak{q}_i \cap A = \mathfrak{p}_i$ für $i \in \{0, \ldots, n\}$.
- (b) Sind $n \in \mathbb{N}_0$ und $\mathfrak{q}_1, \ldots, \mathfrak{q}_n$ Primideale von B mit $\mathfrak{q}_0 \subset \ldots \subset \mathfrak{q}_n$ und setzt man $\mathfrak{p}_i := \mathfrak{q}_i \cap A$ für $i \in \{0, \ldots, n\}$, so gilt $\mathfrak{p}_0 \subset \ldots \subset \mathfrak{p}_n$.

Beweis. (a) Finde q_0 mit "Lying over" 4.2.7 und q_1, q_2, \ldots mit "Going up" 4.2.8.

(b) 4.2.12

Korollar 4.2.14. [\rightarrow 4.1.29] Sei A ein Unterring des kommutativen Ringes B und B ganz über A. Dann dim $A = \dim B$.

Satz 4.2.15 (Noetherscher Normalisierungssatz). [Amalie Emmy Noether *1882 †1935] Jede affine K-Algebra [\rightarrow 1.1.19] mit $0 \neq 1$ enthält eine Polynomalgebra über K [\rightarrow 1.1.11], über der sie ganz ist.

Beweis. Wir zeigen die Behauptung durch Induktion nach $n \in \mathbb{N}_0$ für alle Algebren der Form $K[x_1, \ldots, x_n]$.

 $\underline{n=0}$ \checkmark

 $n-1 \to n \ (n \in \mathbb{N})$ Sind x_1, \ldots, x_n K-algebraisch unabhängig, so ist nichts zu zeigen. Es gebe also $f \in K[\underline{X}] \setminus \{0\}$ mit $f(x_1, \ldots, x_n) = 0$. Schreibe $f = \sum_{\alpha} a_{\alpha} \underline{X}^{\alpha}$ mit $a_{\alpha} \in K$. Seien $e_2, \ldots, e_n \in \mathbb{N}$ im Moment beliebig (später werden wir sie in Abhängigkeit von f festsetzen). Setze $y_2 := x_2 - x_1^{e_2}, \ldots, y_n := x_n - x_1^{e_n}$. Dann gilt $x_2 = y_2 + x_1^{e_2}, \ldots, x_n = y_n + x_1^{e_n}$ und daher $f(x_1, y_2 + x_1^{e_2}, \ldots, y_n + x_1^{e_n}) = 0$. Da $f \notin K$ zeigt diese Gleichung, dass x_1 ganz über $K[y_2, \ldots, y_n]$ ist, sofern $\alpha_1 + \alpha_2 e_2 + \ldots + \alpha_n e_n \neq \beta_1 + \beta_2 e_2 + \ldots + \beta_n e_n$ für $\alpha, \beta \in \mathbb{N}_0^n$ mit $a_\alpha \neq 0 \neq a_\beta$. Wählt man $b \in \mathbb{N}$ groß genug und $e_i := b^i$ für $i \in \{1, \ldots, n\}$, so ist dies sicher gewährleistet. Da die Menge der über $K[y_2, \ldots, y_n]$ ganzen Elemente von $K[x_1, \ldots, x_n]$ einen Unterring von $K[x_1, \ldots, x_n]$ bildet $[\to Z2.1.10]$ ist $K[x_1, \ldots, x_n] = K[x_1, y_2, \ldots, y_n]$ ganz über $K[y_2, \ldots, y_n]$. Nach Induktionsvoraussetzung ist $K[y_2, \ldots, y_n]$ ganz über einem Polynomring über K und somit auch $K[x_1, \ldots, x_n]$ wegen der Transitivität der Ganzheit $[\to Z2.1.9]$.

Satz 4.2.16. Sei *A* eine affine *K*-Algebra. Dann dim $A = \operatorname{trdeg} A < \infty$.

Beweis. Ist $A = \{0\}$, so dim $A = -1 = \operatorname{trdeg} A$. Sei also $A \neq \{0\}$. Nach 4.1.25 gilt trdeg $A < \infty$. Nach 4.2.15 ist A ganz über $K[X_1, \ldots, X_n]$ für K-algebraisch unabhängige $X_1, \ldots, X_n \in A$. Nach 4.2.14 gilt dim $A = \dim K[\underline{X}]$ und nach 4.1.29 trdeg $A = \operatorname{trdeg} K[\underline{X}] \stackrel{4.1.24}{=} n$. Es reicht also dim $K[\underline{X}] = n$ zu zeigen. Nach 4.2.4 gilt dim $K[\underline{X}] \leq n$. Andererseits sind $(0) \subset (X_1) \subset \ldots \subset (X_1, \ldots, X_n)$ Primideale in $K[\underline{X}]$, also dim $K[\underline{X}] \geq n$. □

Bemerkung 4.2.17. Aus dem Noetherschen Normalisierungssatz 4.2.15 folgt sofort das Zariski-Lemma 1.3.5 (und damit der Hilbertsche Nullstellensatz 1.3.7): Sei nämlich A eine affine K-Algebra, die ein Körper ist, $\times K \subseteq A$. Dann ist A ganz über einem Polynomring $K[X_1,\ldots,X_n]$ in $X_1,\ldots,X_n\in A$. Ist n=0, so ist A ganz über K woraus man leicht sieht dass K ein endlichdimensionaler K-Vektorraum ist (benutze, dass K endlich erzeugt ist). Wäre aber K so wäre K ganz über K ganz über K was man sofort widerlegt.

Definition 4.2.18. [\rightarrow 4.2.1] Sei $V \subseteq \mathbb{A}^n$ eine affine K-Varietät. Dann bezeichnet man

$$\dim V := \sup \{ \ell \in \mathbb{N}_0 \mid \text{es gibt irreduzible } K\text{-Variet\"aten } V_0 \subset V_1 \subset \ldots \subset V_\ell \subseteq V \}$$
$$\in \{-1\} \cup \mathbb{N}_0 \cup \{\infty\}$$

als die *Dimension* von *V*.

Bemerkung 4.2.19. Sei $V \subseteq \mathbb{A}^n$ eine affine *K*-Varietät.

(a) Nach 1.4.22 gilt

$$\begin{split} \dim V &= \sup \{ \ell \in \mathbb{N}_0 \mid \text{es gibt Primideale } \mathfrak{p}_0, \dots, \mathfrak{p}_\ell \text{ von } K[\underline{X}] \text{ mit} \\ & \mathfrak{p}_0 \supset \mathfrak{p}_1 \supset \dots \supset \mathfrak{p}_\ell \supseteq I(V) \} \\ &= \dim(K[\underline{X}]/I(V)) \overset{4.2.16}{=} \operatorname{trdeg}(K[\underline{X}]/I(V)) \\ \overset{4.1.25}{=} \sup \{ \ell \in \mathbb{N}_0 \mid \underset{\overline{X}_{i_1}}{\operatorname{es gibt}} \ i_1, \dots, i_\ell \in \{1, \dots, n\} \text{ mit} \\ & \overline{X_{i_1}}, \dots, \overline{X_{i_\ell}} \ K\text{-algebraisch unabhängig in } K[\underline{X}]/I(V) \} \\ &< n < \infty. \end{split}$$

(b) dim
$$V = -1 \iff K[\underline{X}]/I(V) = \{0\} \iff V = \emptyset$$