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A constructive approach to Putinar’s and Schmüdgen’s
Positivstellensätze with applications to degree bounds

and matrix polynomials

In the year 1900, Hilbert presented a list of 23 very influential mathematical prob-
lems [33]. In the 17th of these problems he mainly asked whether each (globally)
nonnegative (real) polynomial (in several variables) could be written as a sum of
squares of rational functions (already knowing that sums of squares of polynomi-
als are not enough [34, page 347], i.e. denominators are needed). Artin solved this
problem to the affirmative [31, Satz 6][8, 1.4.1][18, Thm. 2.1.12]. To do this, he had
to develop together with Schreier the theory of ordered fields [32]. In particular,
he had to introduce the notion of a real closed field [32, p. 87]. Real closed fields
relate to ordered fields very much like algebraically closed fields relate to fields.
The real numbers form the prototype of a real closed field just like the complex
numbers build the prototype of an algebraically closed field. Real closed fields seem
to be an indispensable tool for answering Hilbert’s 17th problem. Moreover, the
answer to Hilbert’s 17th problem remains positive over an arbitrary real closed
field (i.e. when one allows for coefficients from a real closed field instead of the real
numbers). By general arguments from model theory, this implies that the degree
of the numerator and denominator of the rational functions in a sums of squares
representation of a given nonnegative polynomial can be bounded in terms of the
number of variables and the degree of this polynomial. To get a concrete bound
however is extremely tedious (and the known bounds are horribly bad) since Artin’s
proof is highly non-constructive [23, 24].

At about the same time when Artin solved Hilbert’s 17th problem, Pólya proved
another theorem on positive polynomials of a totally different flavor. He char-
acterized (real) homogeneous polynomials (strictly) positive on an open orthant.
Namely, he showed that these can be written as a quotient of an homogeneous
polynomial with only (strictly) positive coefficients and a power of the sum of the
variables [30]. For the case of two variables this is easily seen to be equivalent to
the fact that a univariate polynomial positive on a given interval has only positive
coefficients when expressed in the Bernstein basis of the vector space of polynomials
of sufficiently high degree (associated to the interval). In sharp contrast to Artin’s
theorem, in Pólya’s theorem it is self-evident how to compute the guaranteed rep-
resentation: One simply multiplies the polynomial repeatedly with the sum of the
variables until all coefficients get positive. Powers and Reznick proved an upper
bound for the number of repetitions needed [17]. This bound unfortunately de-
pends on a measure of how close the polynomial gets to zero (loosely speaking the
size of the coefficients divided by the minimum on the standard simplex). Pólya’s
theorem does not hold over any real closed field.

Just a few years after the discovery of Artin’s and Pólya’s theorems, Tarski
invented the method of real quantifier elimination. This was published only about
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20 years later [29]. Then another thirteen years passed before this tool which is
omnipresent in modern real algebra showed its impact on the further developments
around Hilbert’s 17th problem.

Namely, the next major step in the theory of positive polynomials was Kriv-
ine’s seminal paper [28] where he introduces amongst others preordered rings and
their maximal real spectrum. Thus he introduced basic notions and indispensable
tools of modern real algebraic geometry in his very first scientific article. This
brilliant work came too early for people to understand what is going on and has
been neglected for a long time [18, Section 4.7]. Combining this newly developed
theory with Tarski’s real quantifier elimination, Krivine proves in the same article
both the Positivstellensatz [28, Thm. 7][18, 4.2.10][21, 4.4.2] and the archimedean
Positivstellensatz [18, Lemma 5.2.7].

The Positivstellensatz is a refinement and generalization of Hilbert’s 17th prob-
lem which might at first glance look like a technical improvement but actually it
is a very crucial and important enhancement of Artin’s theorem. The archimedean
Positivstellensatz at first sight looks like a variant of the Positivstellensatz but ac-
tually it is more of a Pólya-like nature: Under the additional assumption that the
given preorder is archimedean, it provides a concrete denominator (namely a natu-
ral number which in many rings can be assumed to be 1). However, Krivine uses the
Positivstellensatz to prove the archimedean Positivstellensatz (combine [28, Thm.
11] with [28, Thm. 7]). Note however, that in the archimedean setting one can
easily avoid the use of Tarski’s theorem to prove the Positivstellensatz. Krivine’s
proof of the archimedean Positivstellensatz is completely constructive up to the
starting point of the proof where he applies the Positivstellensatz to the element
one wants to represent. Much later the author of this note gives a different and
completely constructive proof of the archimedean Positivstellensatz by reducing it
to Pólya’s Theorem [16] (see also [1] for a recent exposition). We will come back
to this later.

The content Krivine’s work was disremembered for about 35 years (though the
work has occasionally been cited even in [21, page 95]) until Prestel took notice of
this. Even now it continues to be ignored by many authors. Therefore the Posi-
tivstellensatz is often attributed to Stengle who rediscovered it ten years later [27].
Independantly, Prestel rediscovered at about the same time the Positivstellensatz
[26, Thm. 5.10] and gave the modern standard proof.

Unexpectedly, the next major breakthrough in the theory of positive polynomi-
als came from functional analysis. In 1991, Schmüdgen used the Positivstellensatz
to prove that multiplication operators arising in a GNS construction are bounded
and used the spectral theorem and separating techniques for convex sets to prove
what is now the celebrated Schmüdgen’s Positivstellensatz [25, Cor. 3][18, Thm.
5.2.9][8, Cor. 6.1.2]. It is a denominator-free version of the Positivstellensatz over
compact semialgebraic sets. It took more than seven years until people from real
algebraic geometry could find an algebraic proof for Schmüdgen’s Positivstellensatz.
Namely, Wörmann found in his thesis (see [19]) an amazingly short but ingenious
algebraic argument that allows to deduce Schmüdgen’s Positivstellensatz from the
Positivstellensatz and the archimedean Positivstellensatz. Using the Positivstellen-
satz Wörmann could show that the preorder involved in Schmüdgen’s Positivstel-
lensatz is archimedean and fulfills therefore the hypotheses of the archimedean
Positivstellensatz. In hindsight, Schmüdgen’s theorem is thus a characterization of
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finitely generated archimedean preorderings in the real polynomial ring [18, Thm.
5.1.17][8, Thm. 6.1.1] rather than a theorem about positive polynomials. But the
original proof worked very differently. In the original proof there is a gap reported
by Marshall in [8, pages x,88,89 and 98]. This gap has been found by Prestel and
shortly after it has been bridged by Schmüdgen in an unpublished erratum which
was apparently not known to Marshall.

Just two years later, in 1993, Putinar proved also with functional-analytic meth-
ods a sharpening of the archimedean Positivstellensatz which is now known as Puti-
nar’s Positivstellensatz [22][18, Thm. 5.3.8]. He uses quadratic modules instead of
preorderings. The sums of squares representation is therefore weighted only by
the defining polynomials of the semialgebraic set instead of all their exponentially
many products. It is a common misperception that Putinar’s Positivstellensatz is
a strengthening of Schmüdgen’s Positivstellensatz. In fact, it is a strengthening of
the archimedean Positivstellensatz although one could formulate it in a way that it
would generalize at the same Schmüdgen’s Positivstellensatz (by imposing condition
(i) from [12, Thm. 1] instead of the archimedean condition as a hypothesis). But
any such phrasing of Putinar’s Positivstellensatz just borrows from Schmüdgen’s
characterization of archimedean preorderings which is much deeper than Putinar’s
theorem. In fact, the innovative aspect of Putinar’s article was mostly something
different and his Positivstellensatz was “just” a by-product. Nevertheless it took
again more than seven years until people from real algebraic geometry could find
an algebraic proof for Putinar’s Positivstellensatz. It was Jacobi who found a very
technical and long algebraic argument [18, Lemma 5.3.7]. Another seven years later
Marshall found an ingenious argument that radically shortened Jacobi’s proof [8,
Thm. 5.4.4].

The author’s constructive approach. In 2002, the author found a new
proof of the archimedean Positivstellensatz which is completely constructive [13].
It uses Pólya’s theorem instead of the Positivstellensatz. It is therefore also an
algorithmic approach to the Positivstellensatz up to Schmüdgen’s characterization
of archimedean preorderings. The latter is still not constructive at all since it uses
the Positivstellensatz and Tarski’s real quantifier elimination (note that we said
above that Tarski could be avoided in the Positivstellensatz in the presence of the
archimedean condition, however this does not help since it is used at a point in the
proof before the archimedean condition is established).

In 2005, the author found a similar approach to Putinar’s Positivstellensatz. The
constructions involved are much more “dirty” than for the archimedean Positivstel-
lensatz in the sense that there is an additional step with a polynomial of potentially
very large degree appearing even before Pólya’s procedure is applied.

The main advantages of these constructive approaches are the following:
(1) Computation of sums of squares representations. One can actually

try to compute the sums of squares representation in the archimedean Positivstel-
lensatz or in Putinar’s Positivstellensatz. Once a Positivstellensatz certificate for
the archimedean property is known, this then applies also to Schmüdgen’s Theorem.
Such a certificate can be found in many cases, and one gets it for free by adding a
redundant inequality defining a big ball to the description of the semialgebraic set
(if a ball containing the set is known).

(2) Complexity analysis. By taking much more care in the constructions,
one can take track of the degree complexity of the sums of squares representations
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in the archimedean Positivstellensatz and in Schmüdgen’s Positivstellensatz [13].
One of the main ingredients is the upper bound on the exponent needed in Pólya’s
theorem proved by Powers and Reznick [17]. Therefore it is not surprising that
again the bound depends on a measure of how close the polynomial gets to zero on
the semialgebraic set (roughly speaking again the size of the coefficients divided by
the minimum on the semialgebraic set).

The same is true for Putinar’s Positivstellensatz [9]. However, the bound is
considerably worse. It seems that the price one has to pay for avoiding the expo-
nentially many products of the defining inequalities is an exponential in the degree
bound (though it is not known if the bounds are sharp).

(3) Parameterized families of sums of squares representations. The
constructions, if performed carefully enough, can often be done uniformly for pa-
rameterized families of polynomials to represent. For the final stage of the proce-
dure, namely the repeated multiplication step in Pólya’s theorem, to terminate, it
is often advantageous if the parameters come from a compact space.

Applications. The applications of the author’s procedure seem to be numerous
and are by far not exhausted. We give here just a few examples.

A. Computing minima of polynomials on compact semialgebraic sets.
One can try to get a sums of squares representation of a polynomial minus an un-
known lower bound of the polynomial. After each multiplication step in Pólya’s
procedure, one solves a linear program in only two (!) variables with the objective
of maximizing the unknown lower bound. The second variable in the linear pro-
gram comes from a parameter introduced in the author’s constructions. This is an
example of (3) with a linearly parameterized family of polynomials, the parameter
ranging over an interval of the real line (namely the set of strict lower bounds of
the polynomial on the given semialgebraic set). This procedure was implemented
by Datta [15].

B. Positive polynomials on cylinders with compact cross section. Pow-
ers had the idea to consider a polynomial on a cylinder with compact cross section
as a parameterized family of polynomials on the same compact semialgebraic set
(namely the cross section). In this way she found mild and reasonable geometric
conditions that guarantee the existence of sums of squares representations of poly-
nomials positive on such cyclinders [14]. This is again an example of (3) with a
linearly parameterized family of polynomials, the parameter ranging over the whole
real line.

C. Positive matrix polynomials. A symmetric matrix polynomials in several
variables can be interpreted as a polynomial in the same variables with coefficients
which are quadratic forms in new variables (one for each row or column). Since
quadratic forms are given by their values on the unit sphere, one can therefore think
of symmetric matrix polynomials as parameterized polynomials with parameters in
the unit sphere which is a compact space. The ideas in (3) above therefore apply.
This was carried out by Hol and Scherer in order to prove a version of Putinar’s
theorem for matrix polynomials [10] (see also [13]).

D. Semidefinite representations. In two seminal articles, Helton and Nie
proved that many convex semialgebraic sets are semidefinitely representable [6, 5]
(attention: the two articles appeared in the wrong order). To prove this they need
sums of squares representation of bounded degree complexity for linear polynomi-
als nonnegative on the given semialgebraic set. The main focus lies on the linear
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polynomials whose kernel is a supporting hyperplane of the convex set. Therefore
neither Schmüdgen’s nor Putinar’s Positivstellensatz is applicable since the linear
form is not strictly positive on the set. Although there are meanwhile a lot of the-
orems generalizing these theorems by allowing for a certain kind of zeros [11, 7, 2],
there are no general complexity bounds available (perhaps one could try to gen-
eralize the author’s constructive approach by using versions of Pólya’s theorems
that allow for zeros [3] but this seems a long way to go). Helton and Nie found a
truly ingenious way to control the degree complexity by using Karush-Kuhn-Tucker
conditions (i.e., “Lagrange-multipliers” for inequalities) and a sums of squares rep-
resentation of the Hessian. The Hessian is a symmetric matrix polynomial which
can very roughly speaking be assumed to be positive with some additional argu-
ments given by Helton and Nie. This created the need for a matrix version of
Schmüdgen’s and Putinar’s Positivstellensatz with control on the degree complex-
ity. But with the observation made in the last point that matrix polynomials fall
under the general idea (3) above, the arguments in [13, 9] go through almost literally
as Helton and Nie observed.
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