Positive polynomials and convergence of LP and SDP relaxations

Markus Schweighofer

Universität Konstanz

ETH
Zürich, May 31, 2005

Notation for the whole talk

Notation for the whole talk

- X_{1}, \ldots, X_{n} variables

Notation for the whole talk

- X_{1}, \ldots, X_{n} variables
- $X:=X_{1}$ when $n=1$

Notation for the whole talk

- X_{1}, \ldots, X_{n} variables
- $X:=X_{1}$ when $n=1,(X, Y):=\left(X_{1}, X_{2}\right)$ when $n=2, \ldots$

Notation for the whole talk

- X_{1}, \ldots, X_{n} variables
- $X:=X_{1}$ when $n=1,(X, Y):=\left(X_{1}, X_{2}\right)$ when $n=2, \ldots$
- $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ polynomial ring

Notation for the whole talk

- X_{1}, \ldots, X_{n} variables
- $X:=X_{1}$ when $n=1,(X, Y):=\left(X_{1}, X_{2}\right)$ when $n=2, \ldots$
- $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ polynomial ring
- $f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ an arbitrary polynomial

Notation for the whole talk

- X_{1}, \ldots, X_{n} variables
- $X:=X_{1}$ when $n=1,(X, Y):=\left(X_{1}, X_{2}\right)$ when $n=2, \ldots$
- $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ polynomial ring
- $f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ an arbitrary polynomial
- $g_{1}, \ldots, g_{m} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ polynomials defining...

Notation for the whole talk

- X_{1}, \ldots, X_{n} variables
- $X:=X_{1}$ when $n=1,(X, Y):=\left(X_{1}, X_{2}\right)$ when $n=2, \ldots$
- $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ polynomial ring
- $f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ an arbitrary polynomial
- $g_{1}, \ldots, g_{m} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ polynomials defining. .
- ... the set $S:=\left\{x \in \mathbb{R}^{n} \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$

$$
\begin{aligned}
& \\
& f \\
& g_{1}, \ldots, g_{m} \\
& \\
& \quad
\end{aligned}
$$

Optimization

We consider the problem of minimizing f on S.

Optimization

We consider the problem of minimizing f on S. So we want to compute numerically the infimum

$$
f^{*}:=\inf \{f(x) \mid x \in S\} \in \mathbb{R} \cup\{ \pm \infty\}
$$

Optimization

We consider the problem of minimizing f on S. So we want to compute numerically the infimum

$$
f^{*}:=\inf \{f(x) \mid x \in S\} \in \mathbb{R} \cup\{ \pm \infty\}
$$

and, if possible, a minimizer, i.e., an element of the set

$$
S^{*}:=\left\{x^{*} \in S \mid f\left(x^{*}\right) \leq f(x) \text { for all } x \in S\right\} .
$$

Linear Programming

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& g_{1}(x) \geq 0 \\
& \vdots \\
& g_{m}(x) \geq 0
\end{aligned}
$$

where all polynomials f and g_{i} are linear, i.e., their degree is ≤ 1. In particular, $S \subseteq \mathbb{R}^{n}$ is a polyhedron.

Linear Programming

minimize $\quad f(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
\left(\begin{array}{ccc}
g_{1}(x) & & \\
& \ddots & \\
& & g_{m}(x)
\end{array}\right) \quad \text { is psd }
$$

where all polynomials f and g_{i} are linear, i.e., their degree is ≤ 1. In particular, $S \subseteq \mathbb{R}^{n}$ is a polyhedron.

S D P

minimize $f(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
\left(\begin{array}{ccc}
g_{11}(x) & \ldots & g_{1 m}(x) \\
\vdots & \ddots & \vdots \\
& \cdots & g_{m m}(x)
\end{array}\right) \text { is psd }
$$

where all polynomials f and $g_{i j}$ are linear, i.e., their degree is ≤ 1.

Semidefinite Programming

minimize $\quad f(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
\left(\begin{array}{ccc}
g_{11}(x) & \ldots & g_{1 m}(x) \\
\vdots & \ddots & \vdots \\
& \cdots & g_{m m}(x)
\end{array}\right) \text { is psd }
$$

where all polynomials f and $g_{i j}$ are linear, i.e., their degree is ≤ 1.

Positive semidefinite matrices and families of vectors
Proposition. A real symmetric $k \times k$ matrix is psd if and only if there are vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{k}$ such that

$$
M=\left(\begin{array}{ccc}
\left\langle v_{1}, v_{1}\right\rangle & \ldots & \left\langle v_{1}, v_{k}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{k}, v_{1}\right\rangle & \ldots & \left\langle v_{k}, v_{k}\right\rangle
\end{array}\right) .
$$

Duality

- Every linear
program (P) has an optimal value P^{*}.

Duality

- Every linear
- To every linear program (P), one can define a dual program (D) which is again a linear program.

Duality

- Every linear
- To every linear program (P), one can define a dual program (D) which is again a linear program.
- If (P) is a minimization problem, then (D) is a maximization problem and weak duality holds:

$$
D^{*} \leq P^{*}
$$

Duality

- Every linear
- To every linear program (P), one can define a dual program (D) which is again a linear program.
- If (P) is a minimization problem, then (D) is a maximization problem and weak duality holds:

$$
D^{*} \leq P^{*}
$$

- Strong duality is desired and often holds:

$$
D^{*}=P^{*}
$$

Duality

- Every semidefinite program (P) has an optimal value P^{*}.
- To every semidefinite program (P), one can define a dual program (D) which is again a semidefinite program.
- If (P) is a minimization problem, then (D) is a maximization problem and weak duality holds:

$$
D^{*} \leq P^{*}
$$

- Strong duality is desired and often holds:

$$
D^{*}=P^{*}
$$

$$
\operatorname{minimize} \sum_{i=0}^{2 d} a_{i} x^{i}
$$

subject to $\quad x \in \mathbb{R}$
where $a_{0}, \ldots, a_{2 d} \in \mathbb{R}$.

$$
\operatorname{minimize} \sum_{i=0}^{2 d} a_{i} x^{i}
$$

subject to $\quad x \in \mathbb{R}$

Note that

$$
\left(\begin{array}{ccccc}
1 & x & x^{2} & \ldots & x^{d} \\
x & x^{2} & \ddots & \ddots & \\
x^{2} & \ddots & \ddots & & \\
\vdots & \ddots & & & \\
x^{d} & & & & x^{2 d}
\end{array}\right) \text { is psd }
$$

where $a_{0}, \ldots, a_{2 d} \in \mathbb{R}$.

$$
\operatorname{minimize} \sum_{i=0}^{2 d} a_{i} x^{i}
$$

subject to $\quad x \in \mathbb{R}$
Note that

X^{2}
\vdots
$X^{d}$$\left(\begin{array}{ccccc}1 & X & X^{2} & \ldots & X^{d} \\ x & x^{2} & \ddots & x^{2} & \ldots \\ x^{2} & \ddots & \ddots & x^{d} \\ \vdots & \ddots & & \\ x^{d} & & & & \\ \end{array}\right.$
where $a_{0}, \ldots, a_{2 d} \in \mathbb{R}$.
$(P) \quad$ minimize $\sum_{i=1}^{2 d} a_{i} y_{i}+a_{0}$
subject to $\quad y \in \mathbb{R}^{2 d}$

$$
\begin{gathered}
1 \\
1 \\
X \\
X^{2} \\
\vdots \\
X^{d}
\end{gathered}\left(\begin{array}{ccccc}
1 & X & X^{2} & \ldots & X^{d} \\
y_{1} & y_{1} & y_{2} & & y_{d} \\
y_{2} & \ddots & \ddots & \ddots & \\
\vdots & \ddots & & & \\
y_{d} & & & & y_{2 d}
\end{array}\right) \text { is psd }
$$

where $a_{0}, \ldots, a_{2 d} \in \mathbb{R}$.

Set $f:=\sum_{i=0}^{2 d} a_{i} X^{i}$ and denote by (D) the semidefinite program dual to (P).

Set $f:=\sum_{i=0}^{2 d} a_{i} X^{i}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*}
$$

Set $f:=\sum_{i=0}^{2 d} a_{i} X^{i}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*}
$$

It turns out that (D) can be interpreted as:
$(D) \quad$ maximize $\quad \mu$
subject to $f-\mu$ is sos

Set $f:=\sum_{i=0}^{2 d} a_{i} X^{i}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*}
$$

It turns out that (D) can be interpreted as:
$(D) \quad$ maximize $\quad \mu$
subject to $f-\mu$ is sos

Proposition. For every $p \in \mathbb{R}[X]$,

$$
p \geq 0 \text { on } \mathbb{R} \Longrightarrow p \text { is a sum of two squares in } \mathbb{R}[X] .
$$

Set $f:=\sum_{i=0}^{2 d} a_{i} X^{i}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*}
$$

It turns out that (D) can be interpreted as:
$(D) \quad$ maximize $\quad \mu$
subject to $\quad f-\mu$ is sos

Proposition. For every $p \in \mathbb{R}[X]$,

$$
p \geq 0 \text { on } \mathbb{R} \Longrightarrow p \text { is a sum of two squares in } \mathbb{R}[X]
$$

Corollary.

$$
D^{*}=P^{*}=f^{*}
$$

minimize $\quad \sum a_{i j} x^{i} y^{j}$

subject to $\quad x, y \in \mathbb{R}$
where $a_{i j} \in \mathbb{R}(i+j \leq 4)$.

$$
\operatorname{minimize} \quad \sum_{i+j \leq 4} a_{i j} x^{i} y^{j}
$$

subject to $\quad x, y \in \mathbb{R}$

Note that $\quad\left(\begin{array}{llllll}1 & x & y & x^{2} & x y & y^{2} \\ x & x^{2} & x y & x^{3} & x^{2} y & x y^{2} \\ y & x y & y^{2} & x^{2} y & x y^{2} & y^{3} \\ x^{2} & x^{3} & x^{2} y & x^{4} & x^{3} y & x^{2} y^{2} \\ x y & x^{2} y & x y^{2} & x^{3} y & x^{2} y^{2} & x y^{3} \\ y^{2} & x y^{2} & y^{3} & x^{2} y^{2} & x y^{3} & y^{4}\end{array}\right)$ is psd
where $a_{i j} \in \mathbb{R}(i+j \leq 4)$.

$$
\operatorname{minimize} \quad \sum_{i+j \leq 4} a_{i j} x^{i} y^{j}
$$

subject to $\quad x, y \in \mathbb{R}$

where $a_{i j} \in \mathbb{R}(i+j \leq 4)$.
$(P) \quad$ minimize $\sum_{1 \leq i+j \leq 4} a_{i j} y_{i j}+a_{00}$
subject to $\quad y_{i j} \in \mathbb{R}(1 \leq i+j \leq 4)$
1
X
Y
X^{2}
$X Y$
$Y^{2}$$\quad\left(\begin{array}{cccccc}1 & X & Y & X^{2} & X Y & Y^{2} \\ y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\ y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\ y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\ y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\ y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04}\end{array}\right)$ is psd
where $a_{i j} \in \mathbb{R}(i+j \leq 4)$.

Set $f:=\sum_{i+j \leq 4} a_{i j} X^{i j}$ and denote by (D) the semidefinite program dual to (P).

Set $f:=\sum_{i+j \leq 4} a_{i j} X^{i j}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*} .
$$

Set $f:=\sum_{i+j \leq 4} a_{i j} X^{i j}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*} .
$$

It turns out that (D) can be interpreted as:

(D) \quad| maximize | μ |
| :---: | :--- |
| subject to | $f-\mu$ is sos |

Set $f:=\sum_{i+j \leq 4} a_{i j} X^{i j}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*} .
$$

It turns out that (D) can be interpreted as:

(D) \quad| maximize | μ |
| :---: | :--- |
| subject to | $f-\mu$ is sos |

Theorem (Hilbert). For every $p \in \mathbb{R}[X, Y]$ of degree ≤ 4,

$$
p \geq 0 \text { on } \mathbb{R}^{2} \Longrightarrow p \text { is a sum of three squares in } \mathbb{R}[X, Y] .
$$

David Hilbert: Ueber die Darstellung definiter Formen als Summe von Formenquadraten
Math. Ann. XXXII 342-350 (1888)
http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN235181684_0032

Set $f:=\sum_{i+j \leq 4} a_{i j} X^{i j}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*} .
$$

It turns out that (D) can be interpreted as:

(D) \quad| maximize | μ |
| :--- | :--- |
| subject to | $f-\mu$ is sos |

Theorem (Hilbert). For every $p \in \mathbb{R}[X, Y]$ of degree ≤ 4,

$$
p \geq 0 \text { on } \mathbb{R}^{2} \Longrightarrow p \text { is a sum of three squares in } \mathbb{R}[X, Y] .
$$

Corollary. $D^{*}=P^{*}=f^{*}$
David Hilbert: Ueber die Darstellung definiter Formen als Summe von Formenquadraten
Math. Ann. XXXII 342-350 (1888)
http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN235181684_0032

The Motzkin polynomial

- Unfortunately, not every polynomial $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ with $p \geq 0$ on \mathbb{R}^{n} is a sum of squares of polynomials.

The Motzkin polynomial

- Unfortunately, not every polynomial $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ with $p \geq 0$ on \mathbb{R}^{n} is a sum of squares of polynomials.
- The first explicit example was found in 1967 by Motzkin:

$$
p:=X^{4} Y^{2}+X^{2} Y^{4}-3 X^{2} Y^{2}+1
$$

The Motzkin polynomial

- Unfortunately, not every polynomial $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ with $p \geq 0$ on \mathbb{R}^{n} is a sum of squares of polynomials.
- The first explicit example was found in 1967 by Motzkin:

$$
p:=X^{4} Y^{2}+X^{2} Y^{4}-3 X^{2} Y^{2}+1
$$

- In fact, there is even no $N \in \mathbb{N}$ such that $p+N$ is a sum of squares in $\mathbb{R}[X, Y, Z]$.

The Motzkin polynomial

- Unfortunately, not every polynomial $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ with $p \geq 0$ on \mathbb{R}^{n} is a sum of squares of polynomials.
- The first explicit example was found in 1967 by Motzkin:

$$
p:=X^{4} Y^{2}+X^{2} Y^{4}-3 X^{2} Y^{2}+1
$$

- In fact, there is even no $N \in \mathbb{N}$ such that $p+N$ is a sum of squares in $\mathbb{R}[X, Y, Z]$.
- Described method always yields certified lower bounds, but they might by $-\infty$:

$$
-\infty \leq D^{*}=P^{*} \leq f^{*}
$$

The Motzkin polynomial

- Unfortunately, not every polynomial $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ with $p \geq 0$ on \mathbb{R}^{n} is a sum of squares of polynomials.
- The first explicit example was found in 1967 by Motzkin:

$$
p:=X^{4} Y^{2}+X^{2} Y^{4}-3 X^{2} Y^{2}+1
$$

- In fact, there is even no $N \in \mathbb{N}$ such that $p+N$ is a sum of squares in $\mathbb{R}[X, Y, Z]$.
- Described method always yields certified lower bounds, but they might by $-\infty$:

$$
-\infty \leq D^{*}=P^{*} \leq f^{*}
$$

- But there are a lot of remedies...

Case where S is compact.
For simplicity, we suppose $m=1$ and write $g:=g_{1}$ (technical difficulties which are however not very serious otherwise), i.e.

$$
S=\left\{x \in \mathbb{R}^{n} \mid g(x) \geq 0\right\} .
$$

Case where S is compact.

For simplicity, we suppose $m=1$ and write $g:=g_{1}$ (technical difficulties which are however not very serious otherwise), i.e.

$$
S=\left\{x \in \mathbb{R}^{n} \mid g(x) \geq 0\right\} .
$$

Now we get a sequence $\left(P_{k}\right)_{2 k \geq d}$ of relaxations such that

$$
D_{k}^{*} \leq P_{k}^{*} \leq f^{*} \quad \text { and } \quad \lim _{k \rightarrow \infty} D_{k}^{*}=\lim _{k \rightarrow \infty} P_{k}^{*}=f^{*} .
$$

Jean Lasserre: Global optimization with polynomials and the problem of moments
SIAM J. Optim. 11, No. 3, 796-817 (2001)

$$
\operatorname{minimize} \quad \sum_{1} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

$$
\text { subject to } \quad x \in S
$$

where $k \in \mathbb{N}, 2 k \geq d, a_{\alpha} \in \mathbb{R}(|\alpha| \leq k)$.
$\operatorname{minimize} \quad \sum_{|\alpha| \leq d} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$
subject to $\quad x \in S$

Note that $\left(\begin{array}{cccc}1 & x_{1} & \ldots & x_{n}^{k} \\ x_{1} & & & \vdots \\ \vdots & & & \\ x_{n}^{k} & \ldots \ldots \ldots & x_{n}^{2 k}\end{array}\right)$
where $k \in \mathbb{N}, 2 k \geq d, a_{\alpha} \in \mathbb{R}(|\alpha| \leq k)$.

$$
\operatorname{minimize} \quad \sum_{|\alpha| \leq d} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

subject to $\quad x \in S$
$\left.\begin{array}{c} \\ 1 \\ X_{1} \\ \text { Note that } \\ X_{n}^{k}\end{array}\left(\begin{array}{cccc}1 & X_{1} & \ldots & X_{n}^{k} \\ 1 & x_{1} & \ldots & x_{n}^{k} \\ x_{1} & & & \vdots \\ \vdots & & & \\ x_{n}^{k} & \ldots \ldots \ldots & x_{n}^{2 k}\end{array}\right) \quad \begin{array}{c}\binom{\text { "localization }}{\text { matrix" }}\end{array}\right)$ is psc
where $k \in \mathbb{N}, 2 k \geq d, a_{\alpha} \in \mathbb{R}(|\alpha| \leq k)$.
$\left(P_{k}\right) \quad$ minimize $\sum_{1 \leq|\alpha| \leq d} a_{\alpha} y_{\alpha}+a_{0}$ subject to $\quad y_{\alpha} \in \mathbb{R} \quad(|\alpha| \leq k)$

$$
\begin{gathered}
\\
1 \\
X_{1} \\
\vdots \\
X_{n}^{k}
\end{gathered}\left(\left(\begin{array}{ccc}
1 & X_{1} & \ldots \\
1 & y_{10 \ldots 0} \ldots \\
y_{10 \ldots 0} & & \\
\vdots & & \\
& & \\
& &
\end{array}\right.\right.
$$

$$
\left.\begin{array}{l}
\\
\\
\left(\begin{array}{c}
X_{n}^{k} \\
\\
\\
\\
\text { "localization } \\
\text { matrix" }
\end{array}\right)
\end{array}\right) \text { is psc }
$$

where $k \in \mathbb{N}, 2 k \geq d, a_{\alpha} \in \mathbb{R}(|\alpha| \leq k)$.

Case where S is compact.
Theorem (Schmüdgen, Putinar, ...) If $f>0$ on S, then $f=s+g t$ for sums of squares s, t in $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$.

Case where S is compact.
Theorem (Schmüdgen, Putinar, ...) If $f>0$ on S, then $f=s+g t$ for sums of squares s, t in $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$.
Corollary (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$. How fast?

Case where S is compact.

Theorem (Schmüdgen, Putinar, ...) If $f>0$ on S, then $f=s+g t$ for sums of squares s, t in $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$.
Corollary (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$. How fast?

Theorem. There exists $C \in \mathbb{N}$ depending on f and g and $c \in \mathbb{N}$ depending on g such that

$$
f^{*}-D_{k}^{*} \leq \frac{C}{\sqrt[c]{k}} \quad \text { for big } k
$$

On the complexity of Schmüdgen's Positivstellensatz Journal of Complexity 20, No. 4, 529-543 (2004)

Optimization of polynomials on compact semialgebraic sets SIAM Journal on Optimization 15, No. 3, 805-825 (2005)

Further properties of the method for compact S

- Feasible solutions of $\left(D_{k}\right)$ are certified lower bounds of f^{*}.

Further properties of the method for compact S

- Feasible solutions of $\left(D_{k}\right)$ are certified lower bounds of f^{*}.
- Method converges from below to f^{*}.

Further properties of the method for compact S

- Feasible solutions of $\left(D_{k}\right)$ are certified lower bounds of f^{*}.
- Method converges from below to f^{*}.
- Method converges to unique minimizers.

Optimization of polynomials on compact semialgebraic sets SIAM Journal on Optimization 15, No. 3, 805-825 (2005)

Further properties of the method for compact S

- Feasible solutions of $\left(D_{k}\right)$ are certified lower bounds of f^{*}.
- Method converges from below to f^{*}.
- Method converges to unique minimizers. Disadvantage: Possibly from outside the set S.

Optimization of polynomials on compact semialgebraic sets SIAM Journal on Optimization 15, No. 3, 805-825 (2005)

Further properties of the method for compact S

- Feasible solutions of $\left(D_{k}\right)$ are certified lower bounds of f^{*}.
- Method converges from below to f^{*}.
- Method converges to unique minimizers. Disadvantage: Possibly from outside the set S.
- If there is a unique minimizer and it lies in the interior of S,

Optimization of polynomials on compact semialgebraic sets SIAM Journal on Optimization 15, No. 3, 805-825 (2005)

Further properties of the method for compact S

- Feasible solutions of $\left(D_{k}\right)$ are certified lower bounds of f^{*}.
- Method converges from below to f^{*}.
- Method converges to unique minimizers. Disadvantage: Possibly from outside the set S.
- If there is a unique minimizer and it lies in the interior of S, then the method produces a sequence of intervals containing f^{*} whose endpoints converge to f^{*}.

> Optimization of polynomials on compact semialgebraic sets SIAM Journal on Optimization 15, No. 3, 805-825 (2005)

Implementations

- Henrion and Lasserre: GloptiPoly http://www.laas.fr/~henrion/software/gloptipoly/
- Prajna, Papachristodoulou, Parrilo: SOSTOOLS http://control.ee.ethz.ch/~parrilo/sostools/
- Both use the free SeDuMi solver by Jos Sturm
- But they need MATLAB and the MATLAB Symbolic Toolbox

Example: The maximum cut problem

Given a graph, i.e., an $n \in \mathbb{N}$ (number of nodes) and a set

$$
E \subseteq\left\{(i, j) \in\{1, \ldots, n\}^{2} \mid i<j\right\}
$$

(of edges),

Example: The maximum cut problem

Given a graph, i.e., an $n \in \mathbb{N}$ (number of nodes) and a set

$$
E \subseteq\left\{(i, j) \in\{1, \ldots, n\}^{2} \mid i<j\right\}
$$

(of edges), find the maximum cut value, i.e., the maximal possible number of edges that connect nodes with different signs when each node is assigned a sign + or - .

Example: The maximum cut problem

Given a graph, i.e., an $n \in \mathbb{N}$ (number of nodes) and a set

$$
E \subseteq\left\{(i, j) \in\{1, \ldots, n\}^{2} \mid i<j\right\}
$$

(of edges), find the maximum cut value, i.e., the maximal possible number of edges that connect nodes with different signs when each node is assigned a sign + or - .

$$
\begin{aligned}
\text { maximize } & \sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right) \\
\text { subject to } & x_{i}^{2}=1 \text { for all } i \in\{1, \ldots, n\}
\end{aligned}
$$

MAXCUT

maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)$
subject to $\quad x \in\{-1,1\}^{n}$

MAXCUT

maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)$
subject to $\quad x \in\{-1,1\}^{n}$

Note that $\quad\left(\begin{array}{cccc}1 & x_{1} x_{2} & \cdots & x_{1} x_{n} \\ x_{2} x_{1} & 1 & & x_{2} x_{n} \\ \vdots & & \ddots & \vdots \\ x_{n} x_{1} & \cdots \cdots \cdots \cdots & 1\end{array}\right)$ is psd

MAXCUT

maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)$
subject to $\quad x \in\{-1,1\}^{n}$
$\begin{array}{cc} \\ \text { Note that } & \begin{array}{ccccc}X_{1} & \ldots & \ldots & \ldots & X_{n} \\ X_{1} \\ \vdots \\ \vdots \\ X_{n}\end{array}\left(\begin{array}{ccccc}1 & x_{1} x_{2} & \ldots & x_{1} x_{n} \\ x_{2} x_{1} & 1 & & x_{2} x_{n} \\ \vdots & & \ddots & \vdots \\ x_{n} x_{1} & \ldots & \ldots & \cdots & 1\end{array}\right) \text { is psd } 10\end{array}$

First MAXCUT relaxation

$\left(P_{1}\right) \quad$ maximize $\quad \sum_{(i, j) \in E} \frac{1}{2}\left(1-y_{i j}\right)$
subject to $\quad y_{i j} \in \mathbb{R} \quad(1 \leq i<j \leq n)$

$$
\begin{gathered}
\\
X_{1} \\
\vdots \\
\vdots \\
X_{n}
\end{gathered}\left(\begin{array}{rrrrc}
X_{1} & \cdots & \cdots & \cdots & X_{n} \\
1 & y_{12} & \ldots & y_{1 n} \\
y_{12} & 1 & & y_{2 n} \\
\vdots & & \ddots & \vdots \\
y_{1 n} & \ldots & \ldots & 1
\end{array}\right) \text { is psd }
$$

MAXCUT

$$
\operatorname{maximize} \sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)
$$

subject to $\quad x \in\{-1,1\}^{n}$

MAXCUT

maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)$
subject to $\quad x \in\{-1,1\}^{n}$

Note that $\quad\left(\begin{array}{cccccc}1 & x_{1} x_{2} & \cdots & \cdots & \cdots & \cdots \\ x_{2} x_{1} & 1 & & & & \\ \vdots & & \ddots & & & \\ \vdots & & & \ddots & & \\ & & & & & 1\end{array}\right)$ is psd

MAXCUT

maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)$
subject to $\quad x \in\{-1,1\}^{n}$
Note that
1
$X_{1} X_{2}$
$X_{1} X_{3}$
\vdots
$X_{n-1} X_{n}$$\left(\begin{array}{cccccc}1 & X_{1} X_{2} & X_{1} X_{3} & \ldots & X_{n-1} X_{n} \\ 1 & x_{1} x_{2} & \ldots & \ldots & \ldots & \ldots \\ x_{2} x_{1} & 1 & & & & \\ \vdots & & \ddots & & & \\ \vdots & & & \ddots & \\ & & & & & 1\end{array}\right)$ is psd

Second MAXCUT relaxation

$\left(P_{2}\right) \quad$ maximize $\quad \sum_{(i, j) \in E} \frac{1}{2}\left(1-y_{i j}\right)$
subject to $\quad y_{i j} \in \mathbb{R} \quad(1 \leq i<j \leq n)$

$$
\begin{aligned}
& 1 \quad X_{1} X_{2} \quad X_{1} X_{3} \ldots X_{n-1} X_{n} \\
& \begin{array}{c}
1 \\
X_{1} X_{2} \\
X_{1} X_{3} \\
\vdots \\
X_{n-1} X_{n}
\end{array} \quad\left(\begin{array}{rrrrrc}
1 & y_{12} & \cdots & \cdots & \cdots & \cdots \\
y_{12} & 1 & & & & \\
\vdots & & \ddots & & & \\
\vdots & & & \ddots & & \\
& & & & & 1
\end{array}\right) \text { is psd }
\end{aligned}
$$

- The maximum cut problem is $N P$-complete
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The first relaxation is the famous algorithm of Goemans and Williamson.
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The first relaxation is the famous algorithm of Goemans and Williamson. From no polynomial algorithm it is known that it has a better approximation ratio.
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The first relaxation is the famous algorithm of Goemans and Williamson. From no polynomial algorithm it is known that it has a better approximation ratio. Existence of such an algorithm with ratio <1.0625 implies $P=N P$ (Hastad).
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The first relaxation is the famous algorithm of Goemans and Williamson. From no polynomial algorithm it is known that it has a better approximation ratio. Existence of such an algorithm with ratio <1.0625 implies $P=N P$ (Hastad).
- Solving the second relaxation is a polynomial time algorithm which yields the exact value for all planar graphs (consequence of results of Seymour, Barahona, Mahjoub),
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The first relaxation is the famous algorithm of Goemans and Williamson. From no polynomial algorithm it is known that it has a better approximation ratio. Existence of such an algorithm with ratio <1.0625 implies $P=N P$ (Hastad).
- Solving the second relaxation is a polynomial time algorithm which yields the exact value for all planar graphs (consequence of results of Seymour, Barahona, Mahjoub), and is conjectured to improve over the GW-algorithm.
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The first relaxation is the famous algorithm of Goemans and Williamson. From no polynomial algorithm it is known that it has a better approximation ratio. Existence of such an algorithm with ratio <1.0625 implies $P=N P($ Hastad $)$.
- Solving the second relaxation is a polynomial time algorithm which yields the exact value for all planar graphs (consequence of results of Seymour, Barahona, Mahjoub), and is conjectured to improve over the GW-algorithm.
- The n-th relaxation yields the exact maximum cut value.

Exactness of the n-th MAXCUT relaxation

Proposition. Suppose $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
p \geq 0 \text { on }\{-1,1\}^{n} \text {. }
$$

Then f is a square modulo the ideal

$$
I:=\left(X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right) \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{n}\right] .
$$

Exactness of the n-th MAXCUT relaxation

Proposition. Suppose $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
p \geq 0 \text { on }\{-1,1\}^{n} .
$$

Then f is a square modulo the ideal

$$
I:=\left(X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right) \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]
$$

Proof by algebra. By chinese remainder theorem

$$
\mathbb{R}\left[X_{1}, \ldots, X_{n}\right] / I \cong \mathbb{R}^{\{-1,1\}^{n}} \cong \mathbb{R}^{2^{n}}
$$

Exactness of the n-th MAXCUT relaxation

Proposition. Suppose $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
p \geq 0 \text { on }\{-1,1\}^{n} .
$$

Then f is a square modulo the ideal

$$
I:=\left(X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right) \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]
$$

Proof by algebra. By chinese remainder theorem

$$
\mathbb{R}\left[X_{1}, \ldots, X_{n}\right] / I \cong \mathbb{R}^{\{-1,1\}^{n}} \cong \mathbb{R}^{2^{n}}
$$

Proof by algebraic geometry. I is a zero-dimensional radical ideal.

Exactness of the n-th MAXCUT relaxation

Proposition. Suppose $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
p \geq 0 \text { on }\{-1,1\}^{n} .
$$

Then f is a square modulo the ideal

$$
I:=\left(X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right) \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]
$$

Proof by algebra. By chinese remainder theorem

$$
\mathbb{R}\left[X_{1}, \ldots, X_{n}\right] / I \cong \mathbb{R}^{\{-1,1\}^{n}} \cong \mathbb{R}^{2^{n}}
$$

Proof by algebraic geometry. I is a zero-dimensional radical ideal.

Corollary. $D_{n}^{*}=P_{n}^{*}=f^{*}$

The story goes on...
Theorem (Lasserre). For every $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, the following are equivalent:
(i) $p \geq 0$ on \mathbb{R}^{n}

The story goes on...
Theorem (Lasserre). For every $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, the following are equivalent:
(i) $p \geq 0$ on \mathbb{R}^{n}
(ii) For every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
p+\varepsilon \sum_{i=1}^{n} \sum_{k=0}^{N} \frac{X_{i}^{2 k}}{k!} \text { is sos. }
$$

Jean Lasserre: A sum of squares approximation of nonnegative polynomials http://front.math.ucdavis.edu/math.AG/0412398

The story goes on...

Theorem (Nie, Demmel, Sturmfels). If $p>0$ on \mathbb{R}^{n}, then p is sos modulo its own gradient ideal

$$
I:=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)
$$

[^0]
[^0]: Nie, Demmel, Sturmfels: Minimizing Polynomials via Sum of Squares over the Gradient Ideal http://front.math.ucdavis.edu/math.OC/0411342

