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Notation for the whole talk

• X1, . . . , Xn variables

• X := X1 when n = 1, (X, Y ) := (X1, X2) when n = 2, . . .

• R[X] := R[X1, . . . , Xn] polynomial ring

• f ∈ R[X] an arbitrary polynomial

• g1, . . . , gm ∈ R[X] polynomials defining. . .

• . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
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Optimization

We consider the problem of minimizing f on S. So we want to
compute numerically the infimum

f∗ := inf{f(x) | x ∈ S} ∈ R ∪ {±∞}

and, if possible, a minimizer, i.e., an element of the set

S∗ := {x∗ ∈ S | f(x∗) ≤ f(x) for all x ∈ S}.
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Linear Programming

minimize f(x)

subject to x ∈ Rn

g1(x) ≥ 0
...

gm(x) ≥ 0

where all polynomials f and gi are linear, i.e.,
their degree is ≤ 1. In particular, S ⊆ Rn is a polyhedron.
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S D P

minimize f(x)

subject to x ∈ Rn
g11(x) . . . g1m(x)

...
. . .

...

. . . gmm(x)
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Semidefinite Programming

minimize f(x)

subject to x ∈ Rn
g11(x) . . . g1m(x)

...
. . .

...

. . . gmm(x)

 is psd

where all polynomials f and gij are linear, i.e.,
their degree is ≤ 1.



Positive semidefinite matrices and families of vectors

Proposition. A real symmetric k × k matrix is psd if and only if
there are vectors v1, . . . , vk ∈ Rk such that

M =


〈v1, v1〉 . . . 〈v1, vk〉

...
...

〈vk, v1〉 . . . 〈vk, vk〉

 .
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Duality

• Every semidefinite program (P ) has an optimal value P ∗.

• To every semidefinite program (P ), one can define a dual
program (D) which is again a semidefinite program.

• If (P ) is a minimization problem, then (D) is a maximization
problem and weak duality holds:

D∗ ≤ P ∗

• Strong duality is desired and often holds:

D∗ = P ∗
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minimize
2d∑

i=0

aix
i

subject to x ∈ R

where a0, . . . , a2d ∈ R.
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x2 . . . . . .
...

. . .

xd x2d
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1 x x2 . . . xd

x x2 . . . . . .

x2 . . . . . .
...

. . .

xd x2d


is psd

where a0, . . . , a2d ∈ R.
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(P ) minimize
2d∑

i=1

aiyi + a0

subject to y ∈ R2d

1 X X2 . . . Xd

1

X

X2

...

Xd



1 y1 y2 yd

y1 y2
. . . . . .

y2
. . . . . .

...
. . .

yd y2d


is psd

where a0, . . . , a2d ∈ R.
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Set f :=
∑2d

i=0 aiX
i and denote by (D) the semidefinite program

dual to (P ). Then it is clear that

D∗ ≤ P ∗ ≤ f∗.

It turns out that (D) can be interpreted as:

(D) maximize µ

subject to f − µ is sos

Proposition. For every p ∈ R[X],

p ≥ 0 on R =⇒ p is a sum of two squares in R[X].

Corollary.
D∗ = P ∗ = f∗
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minimize
∑
i+j≤4

aijx
iyj

subject to x, y ∈ R

where aij ∈ R (i + j ≤ 4).
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minimize
∑
i+j≤4

aijx
iyj

subject to x, y ∈ R

Note that



1 x y x2 xy y2

x x2 xy x3 x2y xy2

y xy y2 x2y xy2 y3

x2 x3 x2y x4 x3y x2y2

xy x2y xy2 x3y x2y2 xy3

y2 xy2 y3 x2y2 xy3 y4


is psd

where aij ∈ R (i + j ≤ 4).
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1 x y x2 xy y2

x x2 xy x3 x2y xy2

y xy y2 x2y xy2 y3

x2 x3 x2y x4 x3y x2y2

xy x2y xy2 x3y x2y2 xy3

y2 xy2 y3 x2y2 xy3 y4


is psd

where aij ∈ R (i + j ≤ 4).
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(P ) minimize
∑

1≤i+j≤4

aijyij + a00

subject to yij ∈ R (1 ≤ i + j ≤ 4)

1 X Y X2 XY Y 2

1

X

Y

X2

XY

Y 2



1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04


is psd

where aij ∈ R (i + j ≤ 4).
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Set f :=
∑

i+j≤4 aijX
ij and denote by (D) the semidefinite

program dual to (P ).
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Set f :=
∑

i+j≤4 aijX
ij and denote by (D) the semidefinite

program dual to (P ). Then it is clear that

D∗ ≤ P ∗ ≤ f∗.

It turns out that (D) can be interpreted as:

(D) maximize µ

subject to f − µ is sos

Theorem (Hilbert). For every p ∈ R[X, Y ] of degree ≤ 4,

p ≥ 0 on R2 =⇒ p is a sum of three squares in R[X, Y ].

David Hilbert: Ueber die Darstellung definiter Formen als Summe
von Formenquadraten
Math. Ann. XXXII 342-350 (1888)
http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN235181684_0032
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Theorem (Hilbert). For every p ∈ R[X, Y ] of degree ≤ 4,
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The Motzkin polynomial

• Unfortunately, not every polynomial p ∈ R[X1, . . . , Xn] with
p ≥ 0 on Rn is a sum of squares of polynomials.

• The first explicit example was found in 1967 by Motzkin:

p := X4Y 2 + X2Y 4 − 3X2Y 2 + 1

• In fact, there is even no N ∈ N such that p + N is a sum of
squares in R[X, Y, Z].

• Described method always yields certified lower bounds, but
they might by −∞:

−∞ ≤ D∗ = P ∗ ≤ f∗

• But there are a lot of remedies...
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Case where S is compact.

For simplicity, we suppose m = 1 and write g := g1 (technical
difficulties which are however not very serious otherwise), i.e.

S = {x ∈ Rn | g(x) ≥ 0}.



Case where S is compact.

For simplicity, we suppose m = 1 and write g := g1 (technical
difficulties which are however not very serious otherwise), i.e.

S = {x ∈ Rn | g(x) ≥ 0}.

Now we get a sequence (Pk)2k≥d of relaxations such that

D∗
k ≤ P ∗

k ≤ f∗ and lim
k→∞

D∗
k = lim

k→∞
P ∗

k = f∗.

Jean Lasserre: Global optimization with polynomials and the
problem of moments
SIAM J. Optim. 11, No. 3, 796–817 (2001)
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minimize
∑
|α|≤d

aαxα1
1 · · ·xαn

n

subject to x ∈ S

where k ∈ N, 2k ≥ d, aα ∈ R (|α| ≤ k).
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minimize
∑
|α|≤d

aαxα1
1 · · ·xαn

n

subject to x ∈ S

Note that




1 x1 . . . xk

n

x1

...
...

xk
n . . . . . . . . . x2k

n


“localization

matrix”




is psd

where k ∈ N, 2k ≥ d, aα ∈ R (|α| ≤ k).
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minimize
∑
|α|≤d

aαxα1
1 · · ·xαn

n

subject to x ∈ S

Note that

1 X1 . . . Xk
n

1

X1

...

Xk
n




1 x1 . . . xk

n

x1

...
...

xk
n . . . . . . . . . x2k

n


“localization

matrix”




is psd

where k ∈ N, 2k ≥ d, aα ∈ R (|α| ≤ k).
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(Pk) minimize
∑

1≤|α|≤d

aαyα + a0

subject to yα ∈ R (|α| ≤ k)

1 X1 . . . Xk
n

1

X1

...

Xk
n




1 y10...0 . . .

y10...0

...


“localization

matrix”




is psd

where k ∈ N, 2k ≥ d, aα ∈ R (|α| ≤ k).
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Case where S is compact.

Theorem (Schmüdgen, Putinar, ...) If f > 0 on S, then f = s + gt

for sums of squares s, t in R[X1, . . . , Xn].

Corollary (Lasserre). (D∗
k)k∈N and (P ∗

k )k∈N are increasing
sequences that converge to f∗ and satisfy D∗

k ≤ P ∗
k ≤ f∗. How fast?

Theorem. There exists C ∈ N depending on f and g and c ∈ N
depending on g such that

f∗ −D∗
k ≤

C
c
√

k
for big k.

On the complexity of Schmüdgen’s Positivstellensatz
Journal of Complexity 20, No. 4, 529—543 (2004)

Optimization of polynomials on compact semialgebraic sets
SIAM Journal on Optimization 15, No. 3, 805-825 (2005)
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• Feasible solutions of (Dk) are certified lower bounds of f∗.

• Method converges from below to f∗.

• Method converges to unique minimizers.

Optimization of polynomials on compact semialgebraic sets
SIAM Journal on Optimization 15, No. 3, 805-825 (2005)
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• If there is a unique minimizer and it lies in the interior of S,
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Further properties of the method for compact S

• Feasible solutions of (Dk) are certified lower bounds of f∗.

• Method converges from below to f∗.

• Method converges to unique minimizers. Disadvantage:
Possibly from outside the set S.

• If there is a unique minimizer and it lies in the interior of S,
then the method produces a sequence of intervals containing f∗

whose endpoints converge to f∗.

Optimization of polynomials on compact semialgebraic sets
SIAM Journal on Optimization 15, No. 3, 805-825 (2005)
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Implementations

• Henrion and Lasserre: GloptiPoly
http://www.laas.fr/~henrion/software/gloptipoly/

• Prajna, Papachristodoulou, Parrilo: SOSTOOLS
http://control.ee.ethz.ch/~parrilo/sostools/

• Both use the free SeDuMi solver by Jos Sturm

• But they need MATLAB and the MATLAB Symbolic Toolbox
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Example: The maximum cut problem

Given a graph, i.e., an n ∈ N (number of nodes) and a set

E ⊆ {(i, j) ∈ {1, . . . , n}2 | i < j}

(of edges), find the maximum cut value, i.e., the maximal possible
number of edges that connect nodes with different signs when each
node is assigned a sign + or −.

maximize
∑

(i,j)∈E

1
2
(1− xixj)

subject to x2
i = 1 for all i ∈ {1, . . . , n}
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maximize
∑

(i,j)∈E

1
2
(1− xixj)

subject to x ∈ {−1, 1}n

Note that


1 x1x2 . . . x1xn

x2x1 1 x2xn

...
. . .

...

xnx1 . . . . . . . . . . 1


is psd
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MAXCUT

maximize
∑

(i,j)∈E

1
2
(1− xixj)

subject to x ∈ {−1, 1}n

Note that

X1 . . . . . . . . . Xn

X1

...

...

Xn


1 x1x2 . . . x1xn

x2x1 1 x2xn

...
. . .

...

xnx1 . . . . . . . . . . 1


is psd
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First MAXCUT relaxation

(P1) maximize
∑

(i,j)∈E

1
2
(1− yij)

subject to yij ∈ R (1 ≤ i < j ≤ n)

X1 . . . . . . . . . Xn

X1

...

...

Xn


1 y12 . . . y1n

y12 1 y2n

...
. . .

...

y1n . . . . . . . . . . 1


is psd
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MAXCUT

maximize
∑

(i,j)∈E

1
2
(1− xixj)

subject to x ∈ {−1, 1}n

Note that



1 x1x2 . . . . . . . . . . . .

x2x1 1
...

. . .
...

. . .

1


is psd
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MAXCUT

maximize
∑

(i,j)∈E

1
2
(1− xixj)

subject to x ∈ {−1, 1}n

Note that

1 X1X2 X1X3 . . . Xn−1Xn

1

X1X2

X1X3

...

Xn−1Xn



1 x1x2 . . . . . . . . . . . .

x2x1 1
...

. . .
...

. . .

1


is psd
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Second MAXCUT relaxation

(P2) maximize
∑

(i,j)∈E

1
2
(1− yij)

subject to yij ∈ R (1 ≤ i < j ≤ n)

1 X1X2 X1X3 . . . Xn−1Xn

1

X1X2

X1X3

...

Xn−1Xn



1 y12 . . . . . . . . . . . .

y12 1
...

. . .
...

. . .

1


is psd

20



• The maximum cut problem is NP–complete



• The maximum cut problem is NP–complete

• The first relaxation gives a polynomial time algorithm which
overestimates the maximum cut value at most by a factor of
≈ 1.1382.



• The maximum cut problem is NP–complete

• The first relaxation gives a polynomial time algorithm which
overestimates the maximum cut value at most by a factor of
≈ 1.1382.

• The first relaxation is the famous algorithm of Goemans and
Williamson.



• The maximum cut problem is NP–complete

• The first relaxation gives a polynomial time algorithm which
overestimates the maximum cut value at most by a factor of
≈ 1.1382.

• The first relaxation is the famous algorithm of Goemans and
Williamson. From no polynomial algorithm it is known that it
has a better approximation ratio.



• The maximum cut problem is NP–complete

• The first relaxation gives a polynomial time algorithm which
overestimates the maximum cut value at most by a factor of
≈ 1.1382.

• The first relaxation is the famous algorithm of Goemans and
Williamson. From no polynomial algorithm it is known that it
has a better approximation ratio. Existence of such an
algorithm with ratio < 1.0625 implies P = NP (Hastad).



• The maximum cut problem is NP–complete

• The first relaxation gives a polynomial time algorithm which
overestimates the maximum cut value at most by a factor of
≈ 1.1382.

• The first relaxation is the famous algorithm of Goemans and
Williamson. From no polynomial algorithm it is known that it
has a better approximation ratio. Existence of such an
algorithm with ratio < 1.0625 implies P = NP (Hastad).

• Solving the second relaxation is a polynomial time algorithm
which yields the exact value for all planar graphs (consequence
of results of Seymour, Barahona, Mahjoub),



• The maximum cut problem is NP–complete

• The first relaxation gives a polynomial time algorithm which
overestimates the maximum cut value at most by a factor of
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• The first relaxation gives a polynomial time algorithm which
overestimates the maximum cut value at most by a factor of
≈ 1.1382.

• The first relaxation is the famous algorithm of Goemans and
Williamson. From no polynomial algorithm it is known that it
has a better approximation ratio. Existence of such an
algorithm with ratio < 1.0625 implies P = NP (Hastad).

• Solving the second relaxation is a polynomial time algorithm
which yields the exact value for all planar graphs (consequence
of results of Seymour, Barahona, Mahjoub), and is conjectured
to improve over the GW–algorithm.

• The n–th relaxation yields the exact maximum cut value.
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Exactness of the n-th MAXCUT relaxation

Proposition. Suppose p ∈ R[X1, . . . , Xn] such that
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Then f is a square modulo the ideal
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Exactness of the n-th MAXCUT relaxation

Proposition. Suppose p ∈ R[X1, . . . , Xn] such that

p ≥ 0 on {−1, 1}n.

Then f is a square modulo the ideal

I := (X2
1 − 1, . . . , X2

n − 1) ⊆ R[X1, . . . , Xn].

Proof by algebra. By chinese remainder theorem

R[X1, . . . , Xn]/I ∼= R{−1,1}n ∼= R2n

.

Proof by algebraic geometry. I is a zero-dimensional radical ideal.

Corollary. D∗
n = P ∗

n = f∗
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The story goes on...

Theorem (Lasserre). For every p ∈ R[X1, . . . , Xn], the following are
equivalent:

(i) p ≥ 0 on Rn
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The story goes on...

Theorem (Lasserre). For every p ∈ R[X1, . . . , Xn], the following are
equivalent:

(i) p ≥ 0 on Rn

(ii) For every ε > 0, there exists N ∈ N such that

p + ε

n∑
i=1

N∑
k=0

X2k
i

k!
is sos.

Jean Lasserre: A sum of squares approximation of nonnegative
polynomials
http://front.math.ucdavis.edu/math.AG/0412398
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The story goes on...

Theorem (Nie, Demmel, Sturmfels). If p > 0 on Rn, then p is sos
modulo its own gradient ideal

I :=
(

∂f

∂X1
, . . . ,

∂f

∂Xn

)
.

Nie, Demmel, Sturmfels: Minimizing Polynomials via Sum of
Squares over the Gradient Ideal
http://front.math.ucdavis.edu/math.OC/0411342
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