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Describing convex semialgebraic sets by linear matrix
inequalities

A semialgebraic set in Rn is a subset of Rn defined by a boolean
combination of polynomial inequalities.

In other words, semialgebraic sets are the sets defined by quantifier-free
formulas inductively built up from polynomial inequalities by {¬,∧,∨}.

If one allows for formulas combining polynomial inequalities by
{¬,∧,∨, ∀x ∈ R,∃x ∈ R}, then the defined sets are still semialgebraic.

In fact, given a formula ϕ, one can compute a quantifier-free formula ψ
defining the same set by Tarski’s real quantifier elimination.

If ϕ has only rational coefficients, then the same can be assured for ψ.
Modern algorithms use cylindrical algebraic decomposition.
 Chris Brown et al., Wednesday, Room B, 14:00 – 15:15
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To eliminate quantifiers in a formula, it suffices to eliminate one
quantifier at a time

, without of loss of generality an existential one
(since ∀x ∈ R : ϕ is equivalent to ¬∃x ∈ R : ¬ϕ).

If ϕ defines S ⊆ Rn+m, then ∃xm+1, . . . , xn+m ∈ R : ϕ defines the
image of S under the projection

π : Rn+m → Rn, (x1, . . . , xn, . . . , xn+m) 7→ (x1, . . . , xn).

Disregarding algorithmic issues, real quantifier elimination thus simply
says that projections of semialgebraic sets are again semialgebraic.
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Example. If S ⊆ Rn is semialgebraic, then so is S . Indeed,

S = {x ∈ Rn | ∀ε ∈ R : (ε < 0 ∨ ∃y1, . . . , yn ∈ R :(
¬ϕ ∨

n∑
i=1

(xi − yi )
2 < ε2

)
)

}

if S = {y ∈ Rn | ϕ}.



Describing convex semialgebraic sets by LMIs

A basic closed semialgebraic set in Rn is the solution set of a finite
system of non-strict polynomial inequalities.

In other words, a set S ⊆ Rn is a basic closed semialgebraic set
if S can be written as

S = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

for some m ∈ N and some polynomials g1, . . . , gm ∈ R[X̄ ].

Here and throughout the talk X̄ := (X1, . . . ,Xn) is an n-tuple of
variables and R[X̄ ] := R[X1, . . . ,Xn] denotes the algebra of real
polynomials in n variables.

Can the number m of inequalities be bounded?
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A basic open semialgebraic set in Rn is the solution set of a finite
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Finiteness Theorem.
Every closed semialgebraic set is a finite union of basic closed ones.

Theorem (Bröcker & Scheiderer 1989).
Every basic closed semialgebraic set in Rn can be defined by a system
of at most n(n+1)

2 non-strict polynomial inequalities.

The proofs are hard and non-constructive. See, e.g.,
Bochnak & Coste & Roy: Real algebraic geometry, Springer (1998)

Very special cases have been done constructively by vom Hofe, Bernig,
Grötschel, Henk, Bosse and Averkov, see, e.g.,
Averkov: Representing elementary semi-algebraic sets by a few
polynomial inequalities: A constructive approach
http://arxiv.org/abs/0804.2134
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Example.
S := ({(x , y) ∈ R2 | x2

1 + x2
2 ≤ 1} ∩ ([−1, 1]× [0, 1])) ∪ [0, 1]2 is

closed and semialgebraic but not basic closed.

Indeed, by way of
contradiction assume S = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.
Looking at the green points, one of the gi could be written as
gi = h · (1− X 2

1 − X 2
2 )k for some odd k ≥ 1 and h ∈ R[X1,X2] not

divisible by 1− X 2
1 − X 2

2 .
Looking at the orange points, h would be divisible by 1− X 2

1 − X 2
2 .

x1

x2
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Describing convex semialgebraic sets by LMIs
Symboling computation with semi-algebraic sets is a classical subject.

There has been a lot of work on effective real quantifier elimination,
computing the connected components, polynomial system solving,
computing the dimension, and so on. . .

Basu & Pollack & Roy: Algorithms in real algebraic geometry, Springer
(2006) http://perso.univ-rennes1.fr/marie-francoise.roy/
bpr-posted1.html

This is a very speculative talk about the possibility of finding more
specific techniques for convex semialgebraic sets.

Convexity is a crucial feature in numeric computation (e.g., in interior
point methods for convex optimization) but seems to be neglected in
symbolic computation.

We think that other representations should be chosen for convex
semialgebraic sets.
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Describing convex semialgebraic sets by LMIs

A subset S ⊆ Rn is called convex if any line segment joining two points
of S is contained in S .

For any set S ⊆ Rn, there is a smallest convex
set containing S called the convex hull conv S of S . It consists of the
convex combinations of points in S , i.e.,

by Carathéodory’s theorem

conv S =



/ n+1

N∑
i=1

λixi |

//////

N ∈ N, xi ∈ S , λi ≥ 0, λ1 + · · ·+ λ

/n+1

N = 1

 .

As a consequence of Carathéodory’s theorem,
if S ⊆ Rn is semialgebraic, then conv S is also semialgebraic.

Note also that projections of convex sets are again convex.
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Describing convex semialgebraic sets by LMIs

A convex subset F 6= ∅ of a convex set S is called a face of S if any
line segment L ⊆ S whose relative interior intersects F is actually
contained in F .

In particular: If S 6= ∅, then S is always a face of itself. Any other face
of S is contained in the boundary of S . A singleton F = {x} is a face
of S if and only if x is an extreme point of S .

Proposition. Let S ⊆ Rn be convex. Then

(a) Any face of a face of S is a face of S .
(b) If F1,F2 are faces of S and F1 ( F2, then dimF1 < dimF2.
(c) The intersection of any two faces of S is again a face of S .
(d) S is the disjoint union of the relative interiors of its faces.
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Describing convex semialgebraic sets by LMIs

By a hyperplane, we understand here an affine linear subspace of
codimension one in Rn. Any hyperplane divides Rn into two closed or
open half-spaces.

Closed convex sets can be characterized as the intersections of closed
half-spaces.

Let S ⊆ Rn be convex.

A supporting hyperplane of S is a hyperplane H such that S ∩ H 6= ∅
and S is contained entirely in one of the two closed half-spaces
determined by H.

If H is a supporting hyperplane of S , then S ∩ H is a face of S . These
faces as well as S itself are called exposed faces of S .



Describing convex semialgebraic sets by LMIs

By a hyperplane, we understand here an affine linear subspace of
codimension one in Rn. Any hyperplane divides Rn into two closed or
open half-spaces.

Closed convex sets can be characterized as the intersections of closed
half-spaces.

Let S ⊆ Rn be convex.

A supporting hyperplane of S is a hyperplane H such that S ∩ H 6= ∅
and S is contained entirely in one of the two closed half-spaces
determined by H.

If H is a supporting hyperplane of S , then S ∩ H is a face of S . These
faces as well as S itself are called exposed faces of S .



Describing convex semialgebraic sets by LMIs

By a hyperplane, we understand here an affine linear subspace of
codimension one in Rn. Any hyperplane divides Rn into two closed or
open half-spaces.

Closed convex sets can be characterized as the intersections of closed
half-spaces.

Let S ⊆ Rn be convex.

A supporting hyperplane of S is a hyperplane H such that S ∩ H 6= ∅
and S is contained entirely in one of the two closed half-spaces
determined by H.

If H is a supporting hyperplane of S , then S ∩ H is a face of S . These
faces as well as S itself are called exposed faces of S .



Describing convex semialgebraic sets by LMIs

By a hyperplane, we understand here an affine linear subspace of
codimension one in Rn. Any hyperplane divides Rn into two closed or
open half-spaces.

Closed convex sets can be characterized as the intersections of closed
half-spaces.

Let S ⊆ Rn be convex.

A supporting hyperplane of S is a hyperplane H such that S ∩ H 6= ∅
and S is contained entirely in one of the two closed half-spaces
determined by H.

If H is a supporting hyperplane of S , then S ∩ H is a face of S . These
faces as well as S itself are called exposed faces of S .



Describing convex semialgebraic sets by LMIs

Example. The faces of S := (B1(0) ∩ ([−1, 1]× [0, 1])) ∪ [0, 1]2 are

S , [−1, 1]× {0}, {1} × [0, 1], [0, 1]× {1}, {(1, 0)}, {(1, 1)} and
each point in the second quadrant on the unit circle.
Only one of them is non-exposed, namely {(0, 1)}.

x1

x2

non-exposed face
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Describing convex semialgebraic sets by LMIs

We will try to describe (in two different ways) convex semialgebraic
sets by LMIs.

To define LMIs and for later use, we consider matrix polynomials (also
called polynomial matrices), i.e., elements of R[X̄ ]s×t .

The degree of a matrix polynomial is the maximal degree of its entries.
A linear matrix polynomial is a matrix polynomial of degree at most 1,
i.e., of the form A0 + X1A1 + · · ·+ XnAn for matrices Ai ∈ Rs×t .
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Describing convex semialgebraic sets by LMIs
Let A ∈ SRt×t .

A � 0 ⇐⇒ A positive semidefinite

⇐⇒ 〈Av , v〉 ≥ 0 for all v ∈ Rt

⇐⇒ all eigenvalues of A are ≥ 0
⇐⇒ all coefficients of det(A + TIt) ∈ R[T ] are ≥ 0
⇐⇒ det((Aij)i ,j∈J) ≥ 0 for all J ⊆ {1, . . . , t}

An inequality of the form

A(x) := A0 + x1A1 + · · ·+ xnAn � 0 (x ∈ Rn)

with A0, . . . ,An ∈ SRt×t will be called linear matrix inequality.
This corresponds to the family of linear inequalities

〈A(x)v , v〉 ≥ 0 (x ∈ Rn)

parametrized by v ∈ Rt .
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Three ways to say what is a polyhedron:

I It is the solution set of a finite system of linear inequalities.
I It is the set of all x ∈ Rn such that A(x) � 0

for a diagonal linear matrix polynomial.
I It is the intersection of finitely many closed half-spaces.

Two and a half ways to define a spectrahedron:
I It is the solution set of an LMI.
I It is the set of all x ∈ Rn such that A(x) � 0

for a symmetric linear matrix polynomial.
I It is the intersection of a “nicely parametrized” family

of closed half-spaces.

Polyhedra are easy to deal with algorithmically. For example, you can
use linear programming to optimize a given linear function on them.

Spectrahedra seem to be easy to deal with algorithmically.
For example, you can use semidefinite programming to optimize a given
linear function on them.
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Based on diagonalization of symmetric matrices, spectrahedra share
many good properties with polyhedra.

While projections of polyhedra are still polyhedra, projections of
spectrahedra are convex and semialgebraic but nothing else is known
about them.

In recent years, results of Helton & Vinnikov as well as Helton & Nie
showed that surprisingly many convex semialgebraic sets are
spectrahedra or projections of spectrahedra.
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Let S ⊆ Rn.

We call a symmetric linear matrix polynomial A ∈ SR[X̄ ]t×t an
LMI representation of S if

S = {x ∈ Rn | A(x) � 0}.

If Ȳ is an m-tuple of additional variables, then we call a
symmetric linear matrix polynomial A ∈ SR[X̄ , Ȳ ]t×t a
semidefinite representation of S if

S = {x ∈ Rn | ∃y ∈ Rm : A(x , y) � 0}.

Hence S is a spectrahedron if and only if it is LMI representable,
and S is a projection of a spectrahedron if and only if it is
semidefinitely representable.
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We believe that LMI representations and semidefinite representations
are the “right” representations of convex semialgebraic sets for symbolic
and numeric computation.

For numeric computation this seems to be definitely true since
spectrahedra are the feasible sets of semidefinite programs. Of course
by paying the price of higher complexity, one can allow additional
variables in the constraints of a semidefinite program and optimize in
this way a linear function on any semidefinitely representable set.

This talk is about
I which sets are spectrahedra and which sets are semidefinitely

representable
I how to find LMI representations and semidefinite representations.
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Describing convex semialgebraic sets by LMIs
Example. If S (k) ⊆ Rn is bounded and semidefinitely representable for
k ∈ {1, . . . , `}, then so is conv(

⋃`
k=1 S (k)).

Indeed, define

U(k) := {0} ∪
{

(λ, x) ∈ Rn+1 | λ > 0,
x
λ
∈ S (k)

}
.

Then U(k) is semidefinitely representable: If

∅ 6= S (k) =

x ∈ Rn | ∃y ∈ Rm : A0 +
n∑

i=1

xiAi +
m∑

j=1

yjBj � 0


with Ai ,Bj ∈ SRt×t , then (using that S (k) is bounded)

U(k) =
{

(λ, x) ∈ R≥0×Rn | ∃y ∈ Rm : λA0 +
n∑

i=1

xiAi +
m∑

j=1

yjBj � 0
}

Now

S (k) =
{

x ∈ Rn | ∃λ(1), . . . , λ(`) ∈ R≥0 : ∃y (1), . . . , y (`) ∈ Rn :

∑̀
k=1

λ(k) = 1 ∧ x =
∑̀
k=1

y (k) ∧
∧̀
k=1

(λ(k), y (k)) ∈ U(k)

}
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Describing convex semialgebraic sets by LMIs

If V is a finite-dimensional R-vector space, one can identify V with Rn

by fixing a basis.

Then one can speak about the properties of a set S ⊆ V being open,
closed, semialgebraic, basic open, basic closed, bounded, convex, a
spectrahedron, semidefinitely representable and so on.

All these notions are unambigously defined since they do not depend on
the chosen basis as the change of bases is given by an invertible linear
map.
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Describing convex semialgebraic sets by LMIs

This talk is divided into two parts:

Part I. Spectrahedra

This will lead us to determinantal representations of polynomials.

Part II. Semidefinitely representable sets

This will lead us to sums of squares representations of polynomials.
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This talk is divided into two parts:

Part I. Spectrahedra
This will lead us to determinantal representations of polynomials.

Part II. Semidefinitely representable sets
This will lead us to sums of squares representations of polynomials.



Part I. Spectrahedra



Spectrahedra and their properties

Let S ⊆ Rn be a spectrahedron. Then

I S is convex,
I S is a basic closed semialgebraic set, and
I all faces of S are exposed.

Indeed, if A ∈ SR[X̄ ]t×t is a symmetric linear matrix polynomial such
that S = {x ∈ Rn | A(x) � 0}, then we will see that every face of S is
of the form {x ∈ S | U ⊆ kerA(x)} where U is a linear subspace of Rn.
But if U = Ru1 + · · ·+ Ruk , then

{x ∈ S | U ⊆ kerA(x)} = {x ∈ S | 〈A(x)u1, u1〉+· · ·+〈A(x)uk , uk〉 = 0}

is empty or an exposed face of S since

S ⊆ {x ∈ Rn | 〈A(x)u1, u1〉+ · · ·+ 〈A(x)uk , uk〉 ≥ 0}.
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Spectrahedra and their properties

It remains to show that each face F of S = {x ∈ Rn | A(x) � 0} is of
the form F = {x ∈ S | U ⊆ kerA(x)} for a linear subspace of U ⊆ Rn.

First note that for any B ∈ SRt×t with B � 0, we have
kerB = {v ∈ Rt | 〈Bv , v〉 = 0}. It follows that for any two
B,C ∈ SRt× with B,C � 0, we have ker(B + C ) = (kerB) ∩ (kerC ).

To do this, choose x0 in the relative interior of F and set
U := kerA(x0). To every x ∈ F \ {x0}, we find y ∈ F \ {x0} such that
x0 ∈ (x , y). But then U = kerA(x0) = kerA(x)∩ kerA(y), in particular
U ⊆ kerA(x). This shows F ⊆ {x ∈ S | U ⊆ kerA(x)}. The other
inclusion is slightly harder: Let x ∈ S \ {x0} such that U ⊆ kerA(x).
Then for all y ∈ (x , x0], kerA(y) = U and hence A(y) is positive
definite on U⊥, and even for y ∈ (x , x0 + ε(x0 − x)] if ε > 0 is
sufficiently small. But then x0 + ε(x0 − x) ∈ S and therefore x ∈ F .
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Spectrahedra and their properties
Let S ⊆ Rn be a spectrahedron. Then

I S is convex,
I S is a basic closed semialgebraic set, and
I all faces of S are exposed.

This three properties do not characterize spectrahedra. We will now
learn about another property of polyhedra called rigid convexity which is
strictly stronger and which is conjectured to characterize spectrahedra.

The basic closed semialgebraic set {x ∈ R2 | x4
1 + x4

2 ≤ 1} is convex
and has only exposed faces but we will see that it is not a
spectrahedron. The reason for this will be that it is not rigidly convex.

x1

x2
x4
1 + x4

2 ≤ 1
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Towards a characterization of spectrahedra

In the following, we will define a condition called rigid convexity for
convex sets S with non-empty interior.

If such S is rigidly convex, then
it will be a basic closed semialgebraic convex set with only exposed
faces, and it is conjectured that it is even a spectrahedron.

A convex set has always non-empty interior in its affine hull. By
identifying this affine hull with Rk (for some k ≤ n), one could define
rigid convexity for all convex sets.

Thus the assumption that the interior of S is non-empty is not essential
and just made for simplicity.
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Towards a characterization of spectrahedra
Let S ⊆ Rn be a spectrahedron and x0 ∈ S◦.

Then one can find
A ∈ SR[X̄ ]t×t with A(x0) � 0 such that S = {x ∈ Rn | A(x) � 0}.
Given such an LMI representation, let

I p := detA ∈ R[X̄ ] and
I C the connected component of x0 in {x ∈ Rn | p(x) > 0}.

Then S = C and p is a real zero polynomial at x0 in the following sense:

p(x0) > 0 & ∀x ∈ Rn : ∀λ ∈ C : (p(x0 + λx) = 0 =⇒ λ ∈ R)

Why? Without loss of generality x0 = 0. Then we have Ai ∈ SRt×t

with A0 � 0 such that p = detA = det(A0 + X1A1 + · · ·+ XnAn).
Let x ∈ Rn and λ ∈ C such that
0 = p(x0 + λx) = p(0 + λx) = det(A(λx))

= det(A0 + λ(x1A1 + · · ·+ xnAn))
= det(P∗(A0 + λ(x1A1 + · · ·+ xnAn))P) (P ∈ Rt×t)
= det(P∗A0P + λP∗(x1A1 + · · ·+ xnAn)P) (P∗A0P = It)
= det(It + λB) (B ∈ SRt×t)

and therefore det(B + 1
λ It) = 0 whence − 1

λ ∈ R and λ ∈ R.
S is an algebraic interior in the following sense:

∃p ∈ R[X̄ ] : ∃ connected component C of {x ∈ Rn | p(x) > 0} : S = C

If the degree of p is minimal, we call p the minimal polynomial of S
(unique up to constant factor c > 0). The minimal polynomial of S
divides in R[X̄ ] every other polynomial p of this kind. In particular, our
spectrahedron S is rigidly convex in the following sense:

S is an algebraic interior & ∃x0 ∈ S◦ : min. pol. of S is RZ at x0
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Towards a characterization of spectrahedra
Proposition (Gårding 1959). If S is rigidly convex, then the minimal
polynomial of S has the real zero property at all x0 ∈ S◦

and S is
convex.

We have seen that a spectrahedron with non-empty interior is rigidly
convex.The first big question of the talk is if the converse is true.

Theorem (Helton & Vinnikov 2007).
Every rigidly convex set S ⊆ R2 is a spectrahedron.

This is a consequence of the 1958 Lax conjecture:

Conjecture (Helton & Vinnikov 2007).
For all p ∈ R[X̄ ] RZ at 0 of degree d , there exist Ai ∈ SRd×d

such that A0 � 0 and p = det(A0 + X1A1 + X2A2).

New demonstration bypassing polynomials in non-commuting variables
and giving an explicit construction: Quarez



Towards a characterization of spectrahedra
Proposition (Gårding 1959). If S is rigidly convex, then the minimal
polynomial of S has the real zero property at all x0 ∈ S◦ and S is
convex.

We have seen that a spectrahedron with non-empty interior is rigidly
convex.The first big question of the talk is if the converse is true.

Theorem (Helton & Vinnikov 2007).
Every rigidly convex set S ⊆ R2 is a spectrahedron.

This is a consequence of the 1958 Lax conjecture:

Conjecture (Helton & Vinnikov 2007).
For all p ∈ R[X̄ ] RZ at 0 of degree d , there exist Ai ∈ SRd×d

such that A0 � 0 and p = det(A0 + X1A1 + X2A2).

New demonstration bypassing polynomials in non-commuting variables
and giving an explicit construction: Quarez



Towards a characterization of spectrahedra
Proposition (Gårding 1959). If S is rigidly convex, then the minimal
polynomial of S has the real zero property at all x0 ∈ S◦ and S is
convex.

We have seen that a spectrahedron with non-empty interior is rigidly
convex.

The first big question of the talk is if the converse is true.

Theorem (Helton & Vinnikov 2007).
Every rigidly convex set S ⊆ R2 is a spectrahedron.

This is a consequence of the 1958 Lax conjecture:

Conjecture (Helton & Vinnikov 2007).
For all p ∈ R[X̄ ] RZ at 0 of degree d , there exist Ai ∈ SRd×d

such that A0 � 0 and p = det(A0 + X1A1 + X2A2).

New demonstration bypassing polynomials in non-commuting variables
and giving an explicit construction: Quarez



Towards a characterization of spectrahedra
Proposition (Gårding 1959). If S is rigidly convex, then the minimal
polynomial of S has the real zero property at all x0 ∈ S◦ and S is
convex.

We have seen that a spectrahedron with non-empty interior is rigidly
convex.The first big question of the talk is if the converse is true.

Theorem (Helton & Vinnikov 2007).
Every rigidly convex set S ⊆ R2 is a spectrahedron.

This is a consequence of the 1958 Lax conjecture:

Conjecture (Helton & Vinnikov 2007).
For all p ∈ R[X̄ ] RZ at 0 of degree d , there exist Ai ∈ SRd×d

such that A0 � 0 and p = det(A0 + X1A1 + X2A2).

New demonstration bypassing polynomials in non-commuting variables
and giving an explicit construction: Quarez



Towards a characterization of spectrahedra
Proposition (Gårding 1959). If S is rigidly convex, then the minimal
polynomial of S has the real zero property at all x0 ∈ S◦ and S is
convex.

We have seen that a spectrahedron with non-empty interior is rigidly
convex.The first big question of the talk is if the converse is true.

Theorem (Helton & Vinnikov 2007).
Every rigidly convex set S ⊆ R2 is a spectrahedron.

This is a consequence of the 1958 Lax conjecture:

Conjecture (Helton & Vinnikov 2007).
For all p ∈ R[X̄ ] RZ at 0 of degree d , there exist Ai ∈ SRd×d

such that A0 � 0 and p = det(A0 + X1A1 + X2A2).

New demonstration bypassing polynomials in non-commuting variables
and giving an explicit construction: Quarez



Towards a characterization of spectrahedra
Proposition (Gårding 1959). If S is rigidly convex, then the minimal
polynomial of S has the real zero property at all x0 ∈ S◦ and S is
convex.

We have seen that a spectrahedron with non-empty interior is rigidly
convex.The first big question of the talk is if the converse is true.

Theorem (Helton & Vinnikov 2007).
Every rigidly convex set S ⊆ R2 is a spectrahedron.

This is a consequence of the 1958 Lax conjecture:

Conjecture (Helton & Vinnikov 2007).
For all p ∈ R[X̄ ] RZ at 0 of degree d , there exist Ai ∈ SRd×d

such that A0 � 0 and p = det(A0 + X1A1 + X2A2).

New demonstration bypassing polynomials in non-commuting variables
and giving an explicit construction: Quarez



Towards a characterization of spectrahedra
Proposition (Gårding 1959). If S is rigidly convex, then the minimal
polynomial of S has the real zero property at all x0 ∈ S◦ and S is
convex.

We have seen that a spectrahedron with non-empty interior is rigidly
convex.The first big question of the talk is if the converse is true.

Theorem (Helton & Vinnikov 2007).
Every rigidly convex set S ⊆ R2 is a spectrahedron.

This is a consequence of the 1958 Lax conjecture:

Lax conjecture (1958)
For all p ∈ R[X1,X2] RZ at 0 of degree d , there exist Ai ∈ SRd×d

such that A0 � 0 and p = det(A0 + X1A1 + X2A2).

New demonstration bypassing polynomials in non-commuting variables
and giving an explicit construction: Quarez



Towards a characterization of spectrahedra
Proposition (Gårding 1959). If S is rigidly convex, then the minimal
polynomial of S has the real zero property at all x0 ∈ S◦ and S is
convex.

We have seen that a spectrahedron with non-empty interior is rigidly
convex.The first big question of the talk is if the converse is true.

Theorem (Helton & Vinnikov 2007).
Every rigidly convex set S ⊆ R2 is a spectrahedron.

This is a consequence of the 1958 Lax conjecture:

Theorem (Helton & Vinnikov 2007).
For all p ∈ R[X1,X2] RZ at 0 of degree d , there exist Ai ∈ SRd×d

such that A0 � 0 and p = det(A0 + X1A1 + X2A2).

New demonstration bypassing polynomials in non-commuting variables
and giving an explicit construction: Quarez



Towards a characterization of spectrahedra
Proposition (Gårding 1959). If S is rigidly convex, then the minimal
polynomial of S has the real zero property at all x0 ∈ S◦ and S is
convex.

We have seen that a spectrahedron with non-empty interior is rigidly
convex.The first big question of the talk is if the converse is true.

Conjecture (Helton & Vinnikov 2007).
Every rigidly convex set S ⊆ Rn is a spectrahedron.

This would be a consequence of the generalized Lax conjecture:

Conjecture (Helton & Vinnikov 2007).
For all p ∈ R[X̄ ] RZ at 0, there exist t ∈ N and Ai ∈ SRt×t

such that A0 � 0 and p = det(A0 + X1A1 + · · ·+ XnAn).

New demonstration bypassing polynomials in non-commuting variables
and giving an explicit construction: Quarez



Towards a characterization of spectrahedra
Proposition (Gårding 1959). If S is rigidly convex, then the minimal
polynomial of S has the real zero property at all x0 ∈ S◦ and S is
convex.

We have seen that a spectrahedron with non-empty interior is rigidly
convex.The first big question of the talk is if the converse is true.

Conjecture (Helton & Vinnikov 2007).
Every rigidly convex set S ⊆ Rn is a spectrahedron.

This would be a consequence of the generalized Lax conjecture:

Theorem (Helton & McCullough & Vinnikov 2006).
For all p ∈ R[X̄ ]

RZ at 0

, there exist t ∈ N and Ai ∈ SRt×t

such that

A0 � 0 and

p = det(A0 + X1A1 + · · ·+ XnAn).

New demonstration bypassing polynomials in non-commuting variables
and giving an explicit construction: Quarez



Towards a characterization of spectrahedra
Proposition (Gårding 1959). If S is rigidly convex, then the minimal
polynomial of S has the real zero property at all x0 ∈ S◦ and S is
convex.

We have seen that a spectrahedron with non-empty interior is rigidly
convex.The first big question of the talk is if the converse is true.

Conjecture (Helton & Vinnikov 2007).
Every rigidly convex set S ⊆ Rn is a spectrahedron.

This would be a consequence of the generalized Lax conjecture:

Theorem (Helton & McCullough & Vinnikov 2006).
For all p ∈ R[X̄ ]

RZ at 0

, there exist t ∈ N and Ai ∈ SRt×t

such that

A0 � 0 and

p = det(A0 + X1A1 + · · ·+ XnAn).

New demonstration bypassing polynomials in non-commuting variables
and giving an explicit construction: Quarez



Literature on rigid convexity and
determinantal representations of real zero polynomials

Helton & Vinnikov: Linear matrix inequality representation of sets
Comm. Pure Appl. Math. 60 (2007), no. 5, 654–674
http://arxiv.org/abs/math.OC/0306180
http://dx.doi.org/10.1002/cpa.20155

Lewis & Parrilo & Ramana: The Lax conjecture is true
Proc. Amer. Math. Soc. 133 (2005), no. 9, 2495–2499
http://arxiv.org/abs/math.OC/0304104
http://dx.doi.org/10.1090/S0002-9939-05-07752-X

http://arxiv.org/abs/math.OC/0306180
http://dx.doi.org/10.1002/cpa.20155
http://arxiv.org/abs/math.OC/0304104
http://dx.doi.org/10.1090/S0002-9939-05-07752-X


Literature on determinantal representations of arbitrary
polynomials

Helton & McCullough & Vinnikov: Noncommutative convexity arises
from linear matrix inequalities
J. Funct. Anal. 240 (2006), no. 1, 105–191 http:
//math.ucsd.edu/~helton/osiris/NONCOMMINEQ/convRat.ps
http://dx.doi.org/10.1016/j.jfa.2006.03.018

Quarez: Symmetric determinantal representation of polynomials
http://hal.archives-ouvertes.fr/hal-00275615/fr/

http://math.ucsd.edu/~helton/osiris/NONCOMMINEQ/convRat.ps
http://math.ucsd.edu/~helton/osiris/NONCOMMINEQ/convRat.ps
http://dx.doi.org/10.1016/j.jfa.2006.03.018
http://hal.archives-ouvertes.fr/hal-00275615/fr/


Trivial determinantal representations in one variable
Determinantal representations in several variables go far beyond the
scope of this talk.

But as an example, we take a closer look at the case
of one variable.

By factorization of univariate polynomials over R into linear and
quadratic factors, it is clear that each univariate polynomial has a
determinantal representation (useless in practice) since

det
(

c X−a 0
X−a −1 0

0 0 −1

)
= (X − a)2 + c .

If p ∈ R[X ] is a real zero polynomial, i.e., p(0) > 0 and
p =

∏d
i=1 c(X − ai ) for some ai , c ∈ R, then

p = p(0)
d∏

i=1

(1− 1
ai

X ) = p(0) det
(

Id − X Diag
(

1
a1
, . . . ,

1
ad

))
.
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Effective determinantal representations in one variable

Given a polynomial p ∈ Q[X ] of degree d = r + 2s with at least
r real zeros (counted with multiplicity), Quarez constructs
by symbolic computation A ∈ SQd×d such that p = det(J + XA)
where J = Diag(1, . . . , 1︸ ︷︷ ︸

r times

, 1,−1, . . . , 1,−1︸ ︷︷ ︸
s times

).

Theorem (Quarez). If p ∈ R[X ] is of degree d = r + 2s with p(0) 6= 0.
Then p possesses at least r real zeros if and only if there is A ∈ SRd×d

such that p = det(J + XA) with J = Diag(1, . . . , 1︸ ︷︷ ︸
r times

, 1,−1, . . . , 1,−1︸ ︷︷ ︸
s times

).

Quarez: Sturm and Sylvester algorithms revisited via tridiagonal
determinantal representations
http://hal.archives-ouvertes.fr/hal-00338925/fr/

Quarez: Représentations déterminantales effectives des polynômes
univariés par les matrices flèches
http://hal.archives-ouvertes.fr/hal-00318578/fr/

http://hal.archives-ouvertes.fr/hal-00338925/fr/
http://hal.archives-ouvertes.fr/hal-00318578/fr/
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Definition. Let p ∈ R[X̄ ] be a real zero polynomial of degree d . Then
we call

Rkp :=
∂k

∂X k
0

X d
0 p

(
X̄
X0

)∣∣∣∣
X0=1

the k-th Renegar derivative of p.

Attention: R2 6= R ◦ R .

Example. Let p = X 3
1 − X 2

1 − X1 − X 2
2 + 1 ∈ R[X1,X2]. Then p is a

real zero polynomial (see picture) and its Renegar derivatives are Rp =
and R2p = .

X1

X2
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Theorem (Renegar 2006). Let S ⊆ Rn be rigidly convex with 0 ∈ S◦

and minimal polynomial p of degree d . Then each
Rkp (k ∈ {0, . . . , d − 1}) is a real zero polynomial,

and the connected
components S (k) of 0 in {x ∈ Rn | Rk(x) > 0} form an ascending chain

S = S (0) ⊆ S (1) ⊆ S (2) ⊆ · · · ⊆ S (d−1).

Moreover, S is basic closed and has only exposed faces. More precisely,

S = {x ∈ Rn | p(x) ≥ 0,Rp(x) ≥ 0, . . . ,Rd−1p(x) ≥ 0},
and for x ∈ ∂S and k ∈ {0, . . . , d − 1} maximal such that x ∈ ∂S (k),
there is a unique supporting hyperplane of S (k) at x , and this
hyperplane exposes the face in whose relative interior lies x .
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Example on the proven Lax conjecture
We have seen geometrically (see below) that

p = X 3
1 − X 2

1 − X1 − X 2
2 + 1 ∈ R[X1,X2]

is a real zero polynomial.

Since Helton and Vinnikov have proved the
Lax conjecture, there must be A ∈ SR[X̄ ]3×3 with A(0) � 0 and

p = detA. Indeed, setting A :=

(
2−2X1 X2 1−X1

X2 1−X1 0
1−X1 0 1

)
, we have

p = detA and A(0) =
(

2 0 1
0 1 0
1 0 1

)
� 0. How to compute this in general?
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Example on the realization as a basic closed set

Let again p = detA with A =

(
2−2X1 X2 1−X1

X2 1−X1 0
1−X1 0 1

)
.

We have already

seen how to realize the connected of component S of 0 in
{x ∈ R2 | p(x) ≥ 0} as a basic closed set by writing
S = {x ∈ R2 | p(x) ≥ 0,Rp(x) ≥ 0,R2p(x) ≥ 0}.
Another way of doing this is to calculate
det(A + TI3) = T 3 + (4− 3X1)T 2 + (X 2

1 − 5X1 − X 2
2 + 4)T + p and

write S = {x ∈ R2 | p(x) ≥ 0, x2
1 − 5x1 − x2

2 + 4 ≥ 0, 4− 3x1 ≥ 0}.
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Some thoughts on the generalized Lax conjecture

Recall the generalized Lax conjecture of Helton and Vinnikov:

If p ∈ R[X̄ ] is a real zero polynomial, then there is t ∈ N and a linear
symmetric matrix polynomial A ∈ SR[X̄ ]t×t such that A(0) � 0 and
p = detA.

If this conjecture holds true, then the following must also be true:

Suppose A ∈ SR[X̄ ]t×t is a linear symmetric matrix polynomial such
that A(0) � 0 and deg detA ≥ 1.
Then there is u ∈ N and a linear symmetric matrix polynomial
B ∈ SR[X̄ ]u×u such that B(0) � 0 and

R(detA) = detB.

Even this is not known.
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Part II. Semidefinitely
representable sets



Projections of spectrahedrons
Recall: If S = {x ∈ Rn | ∃y ∈ Rk : A(x , y) � 0} for some symmetric
linear matrix polynomial A ∈ R[X̄ , Ȳ ]t×t ,

we call A a semidefinite
representation of S and we say that S is semidefinitely representable.

Example R>0 = {x ∈ R | ∃y ∈ R :
( x 1

1 y
)
� 0}

Let S be semidefinitely representable. Then
I S is convex and
I S si semialgebraic.

Indeed, recall that by Tarski’s real quantifier elimination every
projection of a semialgebraic set is semialgebraic.

Second big question of the talk:

Question (Nemirovski, International Congress of Mathematicians,
Madrid 2006)
Is every convex semialgebraic set semidefinitely representable?
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Nemirovski’s question
Question (Nemirovski, International Congress of Mathematicians,
Madrid 2006)
Is every convex semialgebraic set semidefinitely representable?

Nemirovski: Advances in convex optimization: conic programming
International Congress of Mathematicians. Vol. I, 413–444, Eur. Math.
Soc., Zürich, 2007 http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.94.1539&rep=rep1&type=pdf

Example. We have seen that S := {(x1, x2) ∈ R2 | x4
1 + x4

2 ≤ 1} is not
a spectrahedron. However, it is semidefinitely representable since

S = {(x1, x2) ∈ R2 | ∃y1, y2 ∈ R :

1− y2
1 − y2

2 ≥ 0 & y1 ≥ x2
1 & y2 ≥ x2

2}
=
{

(x1, x2) ∈ R2 | ∃y1, y2 ∈ R :(
1+y1 y2
y2 1−y1

)
� 0 &

( y1 x1
x1 1

)
� 0 &

( y2 x2
x2 1

)
� 0
}
.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.1539&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.1539&rep=rep1&type=pdf
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How to find semidefinite representations

Let U be a subset of a convex set S . Recall that S is the disjoint union
of the relative interiors of its faces.

Netzer defines U " S as the union
of the relative interiors of all faces intersecting U.

Theorem (Netzer). If U ⊆ S ⊆ Rn are semidefinitely representable sets.
Then U " S is again semidefinitely representable.

The proof of Netzer is constructive and gives rise to simple explicit
constructions which preserve for example rational coefficients in the
semidefinite representation.

Netzer: On semidefinite representations of sets
http://arxiv.org/abs/0907.2764

http://arxiv.org/abs/0907.2764
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How to find semidefinite representations

Helton and Vinnikov conjectured that every convex semialgebraic set is
semidefinitely representable.

This is based on their seminal work in which they prove that
surprisingly many compact basic closed convex semialgebraic sets are
semidefinitely representable.

They have two methods:
I The simple and explicit Lasserre moment constructions. The proof

that these relaxations are exact is very deep but works under fairly
general hypotheses.

I A local version of these constructions which is glued together by a
non-constructive compactness argument. The proofs are simpler
though still deep, and the hypotheses are very general.

Each of the methods is scattered over both of the following papers.
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2 − 2
3x2 + 1

3 ≥ 0
AC x5

1 + . . . − x1 + 8x2 − 4 ≥ 0
ABC − x5

1 x4
2 + . . . − 13

3 x2
2 − 8

3x2 + 4
3 ≥ 0

D2 y3 − 2x1x2 + x2
2 ≥ 0

D2C − x4
1 + . . . + 4y3 + 4x1x2 + 4x2

2 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant:
AB x3

1 x4
2 − . . . − x2

2 − 2
3x2 + 1

3 ≥ 0
AC x5

1 + . . . − x1 + 8x2 − 4 ≥ 0
ABC − x5

1 x4
2 + . . . − 13

3 x2
2 − 8

3x2 + 4
3 ≥ 0

D2 y3 − 2y4 + x2
2 ≥ 0

D2C − x4
1 + . . . + 4y3 + 4y4 + 4x2

2 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant:
AB x3

1 x4
2 − . . . − x2

2 − 2
3x2 + 1

3 ≥ 0
AC x5

1 + . . . − x1 + 8x2 − 4 ≥ 0
ABC − x5

1 x4
2 + . . . − 13

3 x2
2 − 8

3x2 + 4
3 ≥ 0

D2 y3 − 2y4 + x2
2 ≥ 0

D2C − x4
1 + . . . + 4y3 + 4y4 + 4x2

2 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0
irredundant:
AB x3

1 x4
2 − . . . − y5 − 2

3x2 + 1
3 ≥ 0

AC x5
1 + . . . − x1 + 8x2 − 4 ≥ 0

ABC − x5
1 x4

2 + . . . − 13
3 y5 − 8

3x2 + 4
3 ≥ 0

D2 y3 − 2y4 + y5 ≥ 0
D2C − x4

1 + . . . + 4y3 + 4y4 + 4y5 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0
irredundant:
AB x3

1 x4
2 − . . . − y5 − 2

3x2 + 1
3 ≥ 0

AC x5
1 + . . . − x1 + 8x2 − 4 ≥ 0

ABC − x5
1 x4

2 + . . . − 13
3 y5 − 8

3x2 + 4
3 ≥ 0

D2 y3 − 2y4 + y5 ≥ 0
D2C − x4

1 + . . . + 4y3 + 4y4 + 4y5 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0
irredundant:
AB y6 − . . . − y5 − 2

3x2 + 1
3 ≥ 0

AC x5
1 + . . . − x1 + 8x2 − 4 ≥ 0

ABC − x5
1 x4

2 + . . . − 13
3 y5 − 8

3x2 + 4
3 ≥ 0

D2 y3 − 2y4 + y5 ≥ 0
D2C − x4

1 + . . . + 4y3 + 4y4 + 4y5 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0
irredundant:
AB y6 − . . . − y5 − 2

3x2 + 1
3 ≥ 0

AC x5
1 + . . . − x1 + 8x2 − 4 ≥ 0

ABC − x5
1 x4

2 + . . . − 13
3 y5 − 8

3x2 + 4
3 ≥ 0

D2 y3 − 2y4 + y5 ≥ 0
D2C − x4

1 + . . . + 4y3 + 4y4 + 4y5 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0
irredundant:
AB y6 − . . . − y5 − 2

3x2 + 1
3 ≥ 0

AC y10 + . . . − x1 + 8x2 − 4 ≥ 0
ABC − x5

1 x4
2 + . . . − 13

3 y5 − 8
3x2 + 4

3 ≥ 0
D2 y3 − 2y4 + y5 ≥ 0
D2C − x4

1 + . . . + 4y3 + 4y4 + 4y5 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0
irredundant:
AB y6 − . . . − y5 − 2

3x2 + 1
3 ≥ 0

AC y10 + . . . − x1 + 8x2 − 4 ≥ 0
ABC − x5

1 x4
2 + . . . − 13

3 y5 − 8
3x2 + 4

3 ≥ 0
D2 y3 − 2y4 + y5 ≥ 0
D2C − x4

1 + . . . + 4y3 + 4y4 + 4y5 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0
irredundant:
AB y6 − . . . − y5 − 2

3x2 + 1
3 ≥ 0

AC y10 + . . . − x1 + 8x2 − 4 ≥ 0
ABC − y13 + . . . − 13

3 y5 − 8
3x2 + 4

3 ≥ 0
D2 y3 − 2y4 + y5 ≥ 0
D2C − x4

1 + . . . + 4y3 + 4y4 + 4y5 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0
irredundant:
AB y6 − . . . − y5 − 2

3x2 + 1
3 ≥ 0

AC y10 + . . . − x1 + 8x2 − 4 ≥ 0
ABC − y13 + . . . − 13

3 y5 − 8
3x2 + 4

3 ≥ 0
D2 y3 − 2y4 + y5 ≥ 0
D2C − x4

1 + . . . + 4y3 + 4y4 + 4y5 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0
irredundant:
AB y6 − . . . − y5 − 2

3x2 + 1
3 ≥ 0

AC y10 + . . . − x1 + 8x2 − 4 ≥ 0
ABC − y13 + . . . − 13

3 y5 − 8
3x2 + 4

3 ≥ 0
D2 y3 − 2y4 + y5 ≥ 0
D2C − y18 + . . . + 4y3 + 4y4 + 4y5 ≥ 0



x1

x2

conv S

y



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(a+bx1+cx2+dx2
1 +ex1x2+f x2

2 )
(
1 x1 x2 x2

1 x1x2 x2
2
)


a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(a+bx1+cx2+dx2
1 +ex1x2+f x2

2 )
(
1 x1 x2 x2

1 x1x2 x2
2
)


a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0

⇐⇒

(a+bx1+cx2+dx2
1 +ex1x2+f x2

2 )
(
1 x1 x2 x2

1 x1x2 x2
2
)


a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(a+bx1+cx2+dx2
1 +ex1x2+f x2

2 )
(
1 x1 x2 x2

1 x1x2 x2
2
)


a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1
x1
x2
x2
1

x1x2
x2
2


(
1 x1 x2 x2

1 x1x2 x2
2
)


a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 x3
1 x2

1 x2 x1x2
2

x2 x1x2 x2
2 x2

1 x2 x1x2
2 x3

2
x2
1 x3

1 x2
1 x2 x4

1 x3
1 x2 x2

1 x2
2

x1x2 x2
1 x2 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
x2
2 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 x4
2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 x3
1 x2

1 x2 x1x2
2

x2 x1x2 x2
2 x2

1 x2 x1x2
2 x3

2
x2
1 x3

1 x2
1 x2 x4

1 x3
1 x2 x2

1 x2
2

x1x2 x2
1 x2 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
x2
2 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 x4
2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 x3
1 x2

1 x2 x1x2
2

x2 x1x2 x2
2 x2

1 x2 x1x2
2 x3

2
x2
1 x3

1 x2
1 x2 x4

1 x3
1 x2 x2

1 x2
2

x1x2 x2
1 x2 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
x2
2 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 x4
2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − x4

2 + 2x2
1 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − x2
1 − x2

2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 y1 x2
1 x2 x1x2

2
x2 x1x2 x2

2 x2
1 x2 x1x2

2 x3
2

x2
1 y1 x2

1 x2 x4
1 x3

1 x2 x2
1 x2

2
x1x2 x2

1 x2 x1x2
2 x3

1 x2 x2
1 x2

2 x1x3
2

x2
2 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 x4
2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − x4

2 + 2x2
1 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − x2
1 − x2

2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 y1 x2
1 x2 x1x2

2
x2 x1x2 x2

2 x2
1 x2 x1x2

2 x3
2

x2
1 y1 x2

1 x2 x4
1 x3

1 x2 x2
1 x2

2
x1x2 x2

1 x2 x1x2
2 x3

1 x2 x2
1 x2

2 x1x3
2

x2
2 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 x4
2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 y1 x2
1 x2 x1x2

2
x2 x1x2 x2

2 x2
1 x2 x1x2

2 x3
2

x2
1 y1 x2

1 x2 x4
1 x3

1 x2 x2
1 x2

2
x1x2 x2

1 x2 x1x2
2 x3

1 x2 x2
1 x2

2 x1x3
2

x2
2 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 y1 x2
1 x2 x1x2

2
x2 x1x2 x2

2 x2
1 x2 x1x2

2 x3
2

x2
1 y1 x2

1 x2 x4
1 x3

1 x2 x2
1 x2

2
x1x2 x2

1 x2 x1x2
2 x3

1 x2 x2
1 x2

2 x1x3
2

x2
2 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 x1x2 x2
2

x1 y3 x1x2 y1 x2
1 x2 x1x2

2
x2 x1x2 x2

2 x2
1 x2 x1x2

2 x3
2

y3 y1 x2
1 x2 x4

1 x3
1 x2 x2

1 x2
2

x1x2 x2
1 x2 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
x2
2 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 x1x2 x2
2

x1 y3 x1x2 y1 x2
1 x2 x1x2

2
x2 x1x2 x2

2 x2
1 x2 x1x2

2 x3
2

y3 y1 x2
1 x2 x4

1 x3
1 x2 x2

1 x2
2

x1x2 x2
1 x2 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
x2
2 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 x2
2

x1 y3 y4 y1 x2
1 x2 x1x2

2
x2 y4 x2

2 x2
1 x2 x1x2

2 x3
2

y3 y1 x2
1 x2 x4

1 x3
1 x2 x2

1 x2
2

y4 x2
1 x2 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
x2
2 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 x2
2

x1 y3 y4 y1 x2
1 x2 x1x2

2
x2 y4 x2

2 x2
1 x2 x1x2

2 x3
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1 x2 x4

1 x3
1 x2 x2

1 x2
2

y4 x2
1 x2 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
x2
2 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 x2

1 x2 x1x2
2

x2 y4 y5 x2
1 x2 x1x2

2 x3
2

y3 y1 x2
1 x2 x4

1 x3
1 x2 x2

1 x2
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y4 x2
1 x2 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
y5 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 x2

1 x2 x1x2
2

x2 y4 y5 x2
1 x2 x1x2

2 x3
2

y3 y1 x2
1 x2 x4

1 x3
1 x2 x2

1 x2
2

y4 x2
1 x2 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
y5 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 x1x2

2
x2 y4 y5 y6 x1x2

2 x3
2

y3 y1 y6 x4
1 x3

1 x2 x2
1 x2

2
y4 y6 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
y5 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 x1x2

2
x2 y4 y5 y6 x1x2

2 x3
2

y3 y1 y6 x4
1 x3

1 x2 x2
1 x2

2
y4 y6 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
y5 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 x4

1 x3
1 x2 x2

1 x2
2

y4 y6 y7 x3
1 x2 x2

1 x2
2 x1x3

2
y5 y7 x3

2 x2
1 x2

2 x1x3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 x4

1 x3
1 x2 x2

1 x2
2

y4 y6 y7 x3
1 x2 x2

1 x2
2 x1x3

2
y5 y7 x3

2 x2
1 x2

2 x1x3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 y8 x3

1 x2 x2
1 x2

2
y4 y6 y7 x3

1 x2 x2
1 x2

2 x1x3
2

y5 y7 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 y8 x3

1 x2 x2
1 x2

2
y4 y6 y7 x3

1 x2 x2
1 x2

2 x1x3
2

y5 y7 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 x3

1 x2 x2
1 x2

2
y4 y6 y7 x3

1 x2 x2
1 x2

2 x1x3
2

y5 y7 y9 x2
1 x2

2 x1x3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 x3

1 x2 x2
1 x2

2
y4 y6 y7 x3

1 x2 x2
1 x2

2 x1x3
2

y5 y7 y9 x2
1 x2

2 x1x3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 x2

1 x2
2

y4 y6 y7 y10 x2
1 x2

2 x1x3
2

y5 y7 y9 x2
1 x2

2 x1x3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 x2

1 x2
2

y4 y6 y7 y10 x2
1 x2

2 x1x3
2

y5 y7 y9 x2
1 x2

2 x1x3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 x1x3

2
y5 y7 y9 y11 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 x1x3

2
y5 y7 y9 y11 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 y12
y5 y7 y9 y11 y12 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)



1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 y12
y5 y7 y9 y11 y12 y2





a
b
c
d
e
f



� 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(−x2
1 − x2

2 + x1 + 4)(a + bx1 + cx2)
(
1 x1 x2

)a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0

⇐⇒

(−x2
1 − x2

2 + x1 + 4)(a + bx1 + cx2)
(
1 x1 x2

)a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(−x2
1 − x2

2 + x1 + 4)(a + bx1 + cx2)
(
1 x1 x2

)a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(−x2
1 − x2

2 + x1 + 4)
(
a b c

) 1
x1
x2

(1 x1 x2
)a

b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)
(−x2

1 − x2
2 + x1 + 4)

 1
x1
x2

(1 x1 x2
)a

b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)
(−x2

1 − x2
2 + x1 + 4)

 1 x1 x2
x1 x2

1 x1x2
x2 x1x2 x2

2

a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−x3

1 − x1x2
2 + x2

1 + 4x1 . . . . . .
−x2

1 x2 − x3
2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−x3

1 − x1x2
2 + x2

1 + 4x1 . . . . . .
−x2

1 x2 − x3
2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − x4

2 + 2x2
1 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − x2
1 − x2

2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−y1 − x1x2

2 + x2
1 + 4x1 . . . . . .

−x2
1 x2 − x3

2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − x4

2 + 2x2
1 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − x2
1 − x2

2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−y1 − x1x2

2 + x2
1 + 4x1 . . . . . .

−x2
1 x2 − x3

2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−y1 − x1x2

2 + x2
1 + 4x1 . . . . . .

−x2
1 x2 − x3

2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−y1 − x1x2

2 + x2
1 + 4x1 . . . . . .

−x2
1 x2 − x3

2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − x2
2 + x1 + 4 . . . . . .

−y1 − x1x2
2 + y3 + 4x1 . . . . . .

−x2
1 x2 − x3

2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − x2
2 + x1 + 4 . . . . . .

−y1 − x1x2
2 + y3 + 4x1 . . . . . .

−x2
1 x2 − x3

2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − x2
2 + x1 + 4 . . . . . .

−y1 − x1x2
2 + y3 + 4x1 . . . . . .

−x2
1 x2 − x3

2 + y4 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − x2
2 + x1 + 4 . . . . . .

−y1 − x1x2
2 + y3 + 4x1 . . . . . .

−x2
1 x2 − x3

2 + y4 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − y5 + x1 + 4 . . . . . .
−y1 − x1x2

2 + y3 + 4x1 . . . . . .
−x2

1 x2 − x3
2 + y4 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
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I R[X̄ ]
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of degree at most k
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I S
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′ := {(L(X1), . . . , L(Xn)) | L ∈ L

k
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Schmüdgen relaxation

(semidefinitely representable)

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.
The question is whether conv S = S ′k for some k ∈ N.



I X̄ = (X1, . . . ,Xn) variables
I R[X̄ ]

k

polynomials

of degree at most k

I g1, . . . , gm ∈ R[X̄ ] polynomials defining . . .
I . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
I T

k

:= {

∑
δ∈{0,1}m

sδg
δ1
1 · · · g δmm | sδ ∈

∑

R[X̄ ]2

, deg(sδg δ) ≤ k

}

convex cone in R[X̄ ]

k

I L

k

:=
{
L | L : R[X̄ ]

k

→ R linear, L(1) = 1, L(T

k

) ⊆ R≥0
}

solution set of the “linearized” system

(spectrahedron in R[X̄ ]∗k)

I S

k

′ := {(L(X1), . . . , L(Xn)) | L ∈ L

k

}
Schmüdgen relaxation

(semidefinitely representable)

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.
The question is whether conv S = S ′k for some k ∈ N.



I X̄ = (X1, . . . ,Xn) variables
I R[X̄ ]

k

polynomials

of degree at most k

I g1, . . . , gm ∈ R[X̄ ] polynomials defining . . .

I . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
I T

k

:= {

∑
δ∈{0,1}m

sδg
δ1
1 · · · g δmm | sδ ∈

∑

R[X̄ ]2

, deg(sδg δ) ≤ k

}

convex cone in R[X̄ ]

k

I L

k

:=
{
L | L : R[X̄ ]

k

→ R linear, L(1) = 1, L(T

k

) ⊆ R≥0
}

solution set of the “linearized” system

(spectrahedron in R[X̄ ]∗k)

I S

k

′ := {(L(X1), . . . , L(Xn)) | L ∈ L

k

}
Schmüdgen relaxation

(semidefinitely representable)

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.
The question is whether conv S = S ′k for some k ∈ N.



I X̄ = (X1, . . . ,Xn) variables
I R[X̄ ]

k

polynomials

of degree at most k

I g1, . . . , gm ∈ R[X̄ ] polynomials defining . . .
I . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

I T

k

:= {

∑
δ∈{0,1}m

sδg
δ1
1 · · · g δmm | sδ ∈

∑

R[X̄ ]2

, deg(sδg δ) ≤ k

}

convex cone in R[X̄ ]

k

I L

k

:=
{
L | L : R[X̄ ]

k

→ R linear, L(1) = 1, L(T

k

) ⊆ R≥0
}

solution set of the “linearized” system

(spectrahedron in R[X̄ ]∗k)

I S

k

′ := {(L(X1), . . . , L(Xn)) | L ∈ L

k

}
Schmüdgen relaxation

(semidefinitely representable)

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.
The question is whether conv S = S ′k for some k ∈ N.



I X̄ = (X1, . . . ,Xn) variables
I R[X̄ ]

k

polynomials

of degree at most k

I g1, . . . , gm ∈ R[X̄ ] polynomials defining . . .
I . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
I T

k

:= {

∑
δ∈{0,1}m

sδg
δ1
1 · · · g δmm | sδ ∈

∑

R[X̄ ]2

, deg(sδg δ) ≤ k

}

convex cone in R[X̄ ]

k

I L

k

:=
{
L | L : R[X̄ ]

k

→ R linear, L(1) = 1, L(T

k

) ⊆ R≥0
}

solution set of the “linearized” system

(spectrahedron in R[X̄ ]∗k)

I S

k

′ := {(L(X1), . . . , L(Xn)) | L ∈ L

k

}
Schmüdgen relaxation

(semidefinitely representable)

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.
The question is whether conv S = S ′k for some k ∈ N.



I X̄ = (X1, . . . ,Xn) variables
I R[X̄ ]

k

polynomials

of degree at most k

I g1, . . . , gm ∈ R[X̄ ] polynomials defining . . .
I . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
I T

k

:= {
∑

δ∈{0,1}m sδg
δ1
1 · · · g δmm | sδ ∈

∑
R[X̄ ]2

, deg(sδg δ) ≤ k

}
convex cone in R[X̄ ]

k

I L

k

:=
{
L | L : R[X̄ ]

k

→ R linear, L(1) = 1, L(T

k

) ⊆ R≥0
}

solution set of the “linearized” system

(spectrahedron in R[X̄ ]∗k)

I S

k

′ := {(L(X1), . . . , L(Xn)) | L ∈ L

k

}
Schmüdgen relaxation

(semidefinitely representable)

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.
The question is whether conv S = S ′k for some k ∈ N.



I X̄ = (X1, . . . ,Xn) variables
I R[X̄ ]

k

polynomials

of degree at most k

I g1, . . . , gm ∈ R[X̄ ] polynomials defining . . .
I . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
I T

k

:= {
∑

δ∈{0,1}m sδg
δ1
1 · · · g δmm | sδ ∈

∑
R[X̄ ]2

, deg(sδg δ) ≤ k

}
convex cone in R[X̄ ]

k

I L

k

:=
{
L | L : R[X̄ ]

k

→ R linear, L(1) = 1, L(T

k

) ⊆ R≥0
}

solution set of the “linearized” system

(spectrahedron in R[X̄ ]∗k)
I S

k

′ := {(L(X1), . . . , L(Xn)) | L ∈ L

k

}
Schmüdgen relaxation

(semidefinitely representable)

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.
The question is whether conv S = S ′k for some k ∈ N.



I X̄ = (X1, . . . ,Xn) variables
I R[X̄ ]

k

polynomials

of degree at most k

I g1, . . . , gm ∈ R[X̄ ] polynomials defining . . .
I . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
I T

k

:= {
∑

δ∈{0,1}m sδg
δ1
1 · · · g δmm | sδ ∈

∑
R[X̄ ]2

, deg(sδg δ) ≤ k

}
convex cone in R[X̄ ]

k

I L

k

:=
{
L | L : R[X̄ ]

k

→ R linear, L(1) = 1, L(T

k

) ⊆ R≥0
}

solution set of the “linearized” system

(spectrahedron in R[X̄ ]∗k)

I S

k

′ := {(L(X1), . . . , L(Xn)) | L ∈ L

k

}
Schmüdgen relaxation

(semidefinitely representable)

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.
The question is whether conv S = S ′k for some k ∈ N.



I X̄ = (X1, . . . ,Xn) variables
I R[X̄ ]k polynomials of degree at most k
I g1, . . . , gm ∈ R[X̄ ] polynomials defining . . .
I . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
I Tk := {

∑
δ∈{0,1}m sδg

δ1
1 · · · g δmm | sδ ∈

∑
R[X̄ ]2, deg(sδg δ) ≤ k}

convex cone in R[X̄ ]k
I Lk :=

{
L | L : R[X̄ ]k → R linear, L(1) = 1, L(Tk) ⊆ R≥0

}
solution set of the “linearized” system (spectrahedron in R[X̄ ]∗k)

I Sk
′ := {(L(X1), . . . , L(Xn)) | L ∈ Lk}

k-th Lasserre relaxation (semidefinitely representable)

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.
The question is whether conv S = S ′k for some k ∈ N.



I X̄ = (X1, . . . ,Xn) variables
I R[X̄ ]k polynomials of degree at most k
I g1, . . . , gm ∈ R[X̄ ] polynomials defining . . .
I . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
I Tk := {

∑
δ∈{0,1}m sδg

δ1
1 · · · g δmm | sδ ∈

∑
R[X̄ ]2, deg(sδg δ) ≤ k}

convex cone in R[X̄ ]k
I Lk :=

{
L | L : R[X̄ ]k → R linear, L(1) = 1, L(Tk) ⊆ R≥0

}
solution set of the “linearized” system (spectrahedron in R[X̄ ]∗k)

I Sk
′ := {(L(X1), . . . , L(Xn)) | L ∈ Lk}

k-th Lasserre relaxation (semidefinitely representable)

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.
The question is whether conv S = S ′k for some k ∈ N.



I X̄ = (X1, . . . ,Xn) variables
I R[X̄ ]k polynomials of degree at most k
I g1, . . . , gm ∈ R[X̄ ] polynomials defining . . .
I . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
I Tk := {

∑
δ∈{0,1}m sδg

δ1
1 · · · g δmm | sδ ∈

∑
R[X̄ ]2, deg(sδg δ) ≤ k}

convex cone in R[X̄ ]k
I Lk :=

{
L | L : R[X̄ ]k → R linear, L(1) = 1, L(Tk) ⊆ R≥0

}
solution set of the “linearized” system (spectrahedron in R[X̄ ]∗k)

I Sk
′ := {(L(X1), . . . , L(Xn)) | L ∈ Lk}

k-th Lasserre relaxation (semidefinitely representable)

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.

The question is whether conv S = S ′k for some k ∈ N.



I X̄ = (X1, . . . ,Xn) variables
I R[X̄ ]k polynomials of degree at most k
I g1, . . . , gm ∈ R[X̄ ] polynomials defining . . .
I . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
I Tk := {

∑
δ∈{0,1}m sδg

δ1
1 · · · g δmm | sδ ∈

∑
R[X̄ ]2, deg(sδg δ) ≤ k}

convex cone in R[X̄ ]k
I Lk :=

{
L | L : R[X̄ ]k → R linear, L(1) = 1, L(Tk) ⊆ R≥0

}
solution set of the “linearized” system (spectrahedron in R[X̄ ]∗k)

I Sk
′ := {(L(X1), . . . , L(Xn)) | L ∈ Lk}

k-th Lasserre relaxation (semidefinitely representable)

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.
The question is whether conv S = S ′k for some k ∈ N.



Suppose S 6= ∅ and fix k ∈ N := {1, 2, 3, . . . }.

Proposition (Powers & Scheiderer 2005).
If S has non-empty interior, then Tk is closed in R[X̄ ]k .

Proposition. If S is compact, then conv S is closed in Rn.

Proposition. Tk = {f ∈ R[X̄ ] | ∀L ∈ Lk : L(f ) ≥ 0}.

Remark. conv S =
⋂
{f −1(R≥0) | f ∈ R[X̄ ]1, f _> 0 on S}

Proposition. S ′k =
⋂
{f −1(R≥0) | f ∈ R[X̄ ]1 ∩ Tk}.

Proposition. If conv S is closed, then
conv S = S ′k ⇐⇒ ∀f ∈ R[X̄ ]1 : (f _> 0 on S =⇒ f ∈ Tk).
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Suppose S is compact.

Theorem (Schmüdgen 1991).
(a) ∀L ∈ L : ∃ probability measure µ on S : ∀p ∈ R[X̄ ] : L(p) =

∫
p dµ

(b) ∀f ∈ R[X̄ ] : (f > 0 on S =⇒ f ∈ T )

Corollary. conv S = S ′

Theorem (2004). For f ∈ R[X̄ ], f =
∑

α∈Nn aα
(
α1+···+αn
α1 ... αn

)
X̄α, aα ∈ R,

we define ‖f ‖ := max{|aα| | α ∈ Nn}. Suppose ∅ 6= S ⊆ (−1, 1)n.Then
there is a constant c ∈ N (depending only on n, m and g1, . . . , gm)
such that, for each f ∈ R[X̄ ]d with f ∗ := min{f (x) | x ∈ S} > 0, we
have f ∈ Tk for some

k ≤ c
(
1 +

(
‖f ‖
f ∗

)c)
.

Corollary. ∃c ∈ N : ∀k ∈ N≥c : ∀x ∈ S ′k : dist(x , conv S) ≤ c
c√k
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Suppose S is compact.

Theorem (Schmüdgen 1991). For all f ∈ R[X̄ ] :
f > 0 on S =⇒ ∃pδ ∈ R[X̄ ]1×∗ : f =

∑
δ∈{0,1} pδp

T
δ g δ

Corollary (Hol & Scherer 2008). For all F ∈ SR[X̄ ]t×t :
F � 0 on S =⇒ ∃Pδ ∈ R[X̄ ]t×∗ : F =

∑
δ∈{0,1} PδP

T
δ g δ

Proof (S.). Given F ∈ R[X̄ ]t×t with F � 0 on S , we consider
f := Y ∈ R[X̄ ,Y ] and observe that f > 0 on

SF := {(x , y) ∈ Rn+1 | x ∈ S , y eigenvalue of F(x)}
= {(x , y) | g1(x) ≥ 0, . . . , gm(x) ≥ 0, pF (x , y) = 0}

where PF ∈ R[X̄ ][Y ] = R[X̄ ,Y ] is the characteristic polynomial of F .
Apply Schmüdgen to f = Y . Use R[X̄ ,Y ]→ R[X̄ ,F ] ⊆ R[X̄ ]t×t

(R[X̄ ,F ] is commutative). Since PF (X̄ ,F ) = 0 by Cayley-Hamilton,
pF disappears in this representation. Now use that matrix calculations
can be done in blocks!
Problem: We do not get degree bounds like for Schmüdgen in this way.
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The original proof of Hol & Scherer imitates my algebraic constructions
for polynomials with matrix coefficients. This is also the way how
Helton and Nie got degree bounds for the Hol & Scherer theorem.

However, one can even avoid introducing matrix coefficients at all by
identifying F ∈ R[X̄ ]t×t with the family (fa)a∈St−1 of polynomials
fa := aTFa ∈ R[X̄ ] and applying my algebraic constructions uniformly
and simultaneously for all a ∈ S t−1.

Theorem (Helton & Nie). For F =
∑

α∈Nn Aα
(
α1+···+αn
α1 ... αn

)
X̄α,

Aα ∈ SRt×t , we define ‖F‖ := max{‖Aα‖ | α ∈ Nn}.
Suppose ∅ 6= S ⊆ (−1, 1)n.Then there is a constant c ∈ N (depending
only on n, m and g1, . . . , gm) such that, for each F ∈ SR[X̄ ]t×t

d with
F ∗ := min{λmin(F (x)) | x ∈ S} > 0, we have F =

∑
δ∈{0,1} PδP

T
δ g δ

for certain Pδ ∈ SR[X̄ ]t×∗k with

k ≤ cd2
(
1 +

(
d2nd ‖F‖

F ∗

)c)
.
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Concavity

The following terminology is not standard but suitable to us. It is a
kind of local concavity of a function which can be detected by looking
at its second derivative.

Definition. Let p ∈ R[X̄ ] and U ⊆ Rn.

p strictly concave on U :⇐⇒ D2p ≺ 0 on U ⇐⇒
∀x ∈ U : ∀v ∈ Rn \ {0} : D2p(x)[v , v ] < 0

p strictly quasiconcave on U :⇐⇒
∀x ∈ U : ∀v ∈ Rn \ {0} : (Dp(x)[v ] = 0 =⇒ D2p(x)[v , v ] < 0)
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Suppose S is compact, convex and has non-empty interior.

Lemma (Helton & Nie). If each gi is strictly concave on S , then
S = S ′k for some k ∈ N.

Idea of proof. Let u ∈ ∂S and f ∈ R[X̄ ]1 \ {0} with f ≥ 0 on S and
f (u) = 0. To show: f ∈ Tk for some k ∈ N which is independent of f .
Since the Slater condition is satisfied, we get Lagrange multipliers
λi ≥ 0, i ∈ I := {i | gi (u) = 0}, such that D(f −

∑
i∈I λigi )(u) = 0.

Now we have for x ∈ Rn

f (x)−
∑
i∈I

λigi (x) =

∫ 1

0

∫ t

0
D2(−

∑
i∈I

λigi )(u+s(x−u))[x−u, x−u]ds dt

Fi ,u ∈ SR[X ]n×n, Fi ,u � 0 on S , use Hol & Scherer with bounds!
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Suppose S is compact, convex and has non-empty interior.

Theorem (Helton & Nie). If each gi is strictly quasiconcave on S , then
S = S ′k for some k ∈ N.

Theorem (Helton & Nie). Suppose each gi is strictly quasiconcave on
S ∩ {gi = 0} and a very ugly additional hypothesis is fulfilled that
might follow from this. Then S = S ′k for some k ∈ N.
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In the introduction, we have proved the following lemma.

Lemma (Helton & Nie). If U1, . . . ,U` ⊆ Rn are bounded semidefinitely
representable sets, then so is conv

⋃`
i=1 Ui .

This enables Helton and Nie to show non-constructively the following
theorem, glueing together local moment constructions.

Theorem (Helton & Nie). Suppose S is compact, each gi is strictly
quasiconcave on S ∩ (∂ conv S) ∩ {gi = 0} and the boundary of S is
contained in the closure of the interior of S . Then conv S is
semidefinitely representable.

One should try to turn this into a symbolic algorithm.



In the introduction, we have proved the following lemma.

Lemma (Helton & Nie). If U1, . . . ,U` ⊆ Rn are bounded semidefinitely
representable sets, then so is conv

⋃`
i=1 Ui .

This enables Helton and Nie to show non-constructively the following
theorem, glueing together local moment constructions.

Theorem (Helton & Nie). Suppose S is compact, each gi is strictly
quasiconcave on S ∩ (∂ conv S) ∩ {gi = 0} and the boundary of S is
contained in the closure of the interior of S . Then conv S is
semidefinitely representable.

One should try to turn this into a symbolic algorithm.
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Suppose S is convex and S◦ 6= ∅.

Theorem (Netzer & Plaumann & S.) If S = S ′k for some k ∈ N, then
all faces of S are exposed.

Example. S = {(x1, x2) ∈ R2 | −1 ≤ x1, x3
1 ≤ x2, 0 ≤ x2 ≤ 1}

x1

x2

non-exposed face

∀k ∈ N : S 6= S ′k
(no matter how g1, . . . , gm are chosen)

Netzer & Plaumann & S.: Exposed faces of semidefinite representable
sets http://arxiv.org/abs/0902.3345
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