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D2C − x4

1 + . . . + 4y3 + 4y4 + 4y5 ≥ 0



System of polynomial inequalities
Less naive linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0
irredundant:
AB − y6 + . . . + y5 + 2

3x2 − 1
3 ≥ 0

AC y10 + . . . − x1 + 8x2 − 4 ≥ 0
ABC − y13 + . . . − 13

3 y5 − 8
3x2 + 4

3 ≥ 0
D2 y3 − 2y4 + y5 ≥ 0
D2C − x4

1 + . . . + 4y3 + 4y4 + 4y5 ≥ 0



System of polynomial inequalities
Less naive linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0
irredundant:
AB − y6 + . . . + y5 + 2

3x2 − 1
3 ≥ 0

AC y10 + . . . − x1 + 8x2 − 4 ≥ 0
ABC − y13 + . . . − 13

3 y5 − 8
3x2 + 4

3 ≥ 0
D2 y3 − 2y4 + y5 ≥ 0
D2C − y18 + . . . + 4y3 + 4y4 + 4y5 ≥ 0



x1

x2

conv S

y



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(a+bx1+cx2+dx2
1+ex1x2+f x2

2 )
(
1 x1 x2 x2

1 x1x2 x2
2
)


a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(a+bx1+cx2+dx2
1+ex1x2+f x2

2 )
(
1 x1 x2 x2

1 x1x2 x2
2
)


a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0

⇐⇒

(a+bx1+cx2+dx2
1+ex1x2+f x2

2 )
(
1 x1 x2 x2

1 x1x2 x2
2
)


a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(a+bx1+cx2+dx2
1+ex1x2+f x2

2 )
(
1 x1 x2 x2

1 x1x2 x2
2
)


a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1
x1
x2
x2
1

x1x2
x2
2


(
1 x1 x2 x2

1 x1x2 x2
2
)


a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 x3
1 x2

1x2 x1x
2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2
x2
1 x3

1 x2
1x2 x4

1 x3
1x2 x2

1x
2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 x3
1 x2

1x2 x1x
2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2
x2
1 x3

1 x2
1x2 x4

1 x3
1x2 x2

1x
2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 x3
1 x2

1x2 x1x
2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2
x2
1 x3

1 x2
1x2 x4

1 x3
1x2 x2

1x
2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − x4

2 + 2x2
1 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − x2
1 − x2

2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 y1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2
x2
1 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − x4

2 + 2x2
1 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − x2
1 − x2

2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 y1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2
x2
1 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 y1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2
x2
1 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 y1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2
x2
1 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 x1x2 x2
2

x1 y3 x1x2 y1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2
y3 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 x1x2 x2
2

x1 y3 x1x2 y1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2
y3 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 x2
2

x1 y3 y4 y1 x2
1x2 x1x

2
2

x2 y4 x2
2 x2

1x2 x1x
2
2 x3

2
y3 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

y4 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 x2
2

x1 y3 y4 y1 x2
1x2 x1x

2
2

x2 y4 x2
2 x2

1x2 x1x
2
2 x3

2
y3 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

y4 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 x2

1x2 x1x
2
2

x2 y4 y5 x2
1x2 x1x

2
2 x3

2
y3 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

y4 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

y5 x1x
2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 x2

1x2 x1x
2
2

x2 y4 y5 x2
1x2 x1x

2
2 x3

2
y3 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

y4 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

y5 x1x
2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 x1x

2
2

x2 y4 y5 y6 x1x
2
2 x3

2
y3 y1 y6 x4

1 x3
1x2 x2

1x
2
2

y4 y6 x1x
2
2 x3

1x2 x2
1x

2
2 x1x

3
2

y5 x1x
2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 x1x

2
2

x2 y4 y5 y6 x1x
2
2 x3

2
y3 y1 y6 x4

1 x3
1x2 x2

1x
2
2

y4 y6 x1x
2
2 x3

1x2 x2
1x

2
2 x1x

3
2

y5 x1x
2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 x4

1 x3
1x2 x2

1x
2
2

y4 y6 y7 x3
1x2 x2

1x
2
2 x1x

3
2

y5 y7 x3
2 x2

1x
2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 x4

1 x3
1x2 x2

1x
2
2

y4 y6 y7 x3
1x2 x2

1x
2
2 x1x

3
2

y5 y7 x3
2 x2

1x
2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 y8 x3

1x2 x2
1x

2
2

y4 y6 y7 x3
1x2 x2

1x
2
2 x1x

3
2

y5 y7 x3
2 x2

1x
2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 y8 x3

1x2 x2
1x

2
2

y4 y6 y7 x3
1x2 x2

1x
2
2 x1x

3
2

y5 y7 x3
2 x2

1x
2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 x3

1x2 x2
1x

2
2

y4 y6 y7 x3
1x2 x2

1x
2
2 x1x

3
2

y5 y7 y9 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 x3

1x2 x2
1x

2
2

y4 y6 y7 x3
1x2 x2

1x
2
2 x1x

3
2

y5 y7 y9 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 x2

1x
2
2

y4 y6 y7 y10 x2
1x

2
2 x1x

3
2

y5 y7 y9 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 x2

1x
2
2

y4 y6 y7 y10 x2
1x

2
2 x1x

3
2

y5 y7 y9 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 x1x

3
2

y5 y7 y9 y11 x1x
3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 x1x

3
2

y5 y7 y9 y11 x1x
3
2 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 y12
y5 y7 y9 y11 y12 y2





a
b
c
d
e
f

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)



1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 y12
y5 y7 y9 y11 y12 y2





a
b
c
d
e
f



� 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(−x2
1 − x2

2 + x1 + 4)(a+ bx1 + cx2)
(
1 x1 x2

)a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0

⇐⇒

(−x2
1 − x2

2 + x1 + 4)(a+ bx1 + cx2)
(
1 x1 x2

)a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(−x2
1 − x2

2 + x1 + 4)(a+ bx1 + cx2)
(
1 x1 x2

)a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(−x2
1 − x2

2 + x1 + 4)
(
a b c

) 1
x1
x2

(1 x1 x2
)a

b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)
(−x2

1 − x2
2 + x1 + 4)

 1
x1
x2

(1 x1 x2
)a

b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)
(−x2

1 − x2
2 + x1 + 4)

 1 x1 x2
x1 x2

1 x1x2
x2 x1x2 x2

2

a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−x3

1 − x1x
2
2 + x2

1 + 4x1 . . . . . .
−x2

1x2 − x3
2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−x3

1 − x1x
2
2 + x2

1 + 4x1 . . . . . .
−x2

1x2 − x3
2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − x4

2 + 2x2
1 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − x2
1 − x2

2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−y1 − x1x

2
2 + x2

1 + 4x1 . . . . . .
−x2

1x2 − x3
2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − x4

2 + 2x2
1 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − x2
1 − x2

2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−y1 − x1x

2
2 + x2

1 + 4x1 . . . . . .
−x2

1x2 − x3
2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−y1 − x1x

2
2 + x2

1 + 4x1 . . . . . .
−x2

1x2 − x3
2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−y1 − x1x

2
2 + x2

1 + 4x1 . . . . . .
−x2

1x2 − x3
2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − x2
2 + x1 + 4 . . . . . .

−y1 − x1x
2
2 + y3 + 4x1 . . . . . .

−x2
1x2 − x3

2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − x2
2 + x1 + 4 . . . . . .

−y1 − x1x
2
2 + y3 + 4x1 . . . . . .

−x2
1x2 − x3

2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − x2
2 + x1 + 4 . . . . . .

−y1 − x1x
2
2 + y3 + 4x1 . . . . . .

−x2
1x2 − x3

2 + y4 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − x2
2 + x1 + 4 . . . . . .

−y1 − x1x
2
2 + y3 + 4x1 . . . . . .

−x2
1x2 − x3

2 + y4 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − y5 + x1 + 4 . . . . . .
−y1 − x1x

2
2 + y3 + 4x1 . . . . . .

−x2
1x2 − x3

2 + y4 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − y5 + x1 + 4 . . . . . .
−y1 − x1x

2
2 + y3 + 4x1 . . . . . .

−x2
1x2 − x3

2 + y4 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − y5 + x1 + 4 . . . . . .
−y1 − y6 + y3 + 4x1 . . . . . .
−x2

1x2 − x3
2 + y4 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − y5 + x1 + 4 . . . . . .
−y1 − y6 + y3 + 4x1 . . . . . .
−x2

1x2 − x3
2 + y4 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − y5 + x1 + 4 . . . . . .
−y1 − y6 + y3 + 4x1 . . . . . .
−y7 − x3

2 + y4 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − y5 + x1 + 4 . . . . . .
−y1 − y6 + y3 + 4x1 . . . . . .
−y7 − x3

2 + y4 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − y5 + x1 + 4 . . . . . .
−y1 − y6 + y3 + 4x1 . . . . . .
−y7 − y8 + y4 + 4x2 . . . . . .

 a
b
c

 ≥ 0



Lasserre relaxation
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)

 −y3 − y5 + x1 + 4 . . . . . .
−y1 − y6 + y3 + 4x1 . . . . . .
−y7 − y8 + y4 + 4x2 . . . . . .



a
b
c



� 0



x1

x2

conv S

y



Notation for the rest of the talk

I N := {1, 2, 3, . . . }, N0 := N ∪ {0}

I n ∈ N0 number of variables
I X = (X1, . . . ,Xn) tuple of variables
I R[X ] := R[X1, . . . ,Xn] polynomial ring over R

(now R = R, later R a real closed field)
I R[X ]d := {p ∈ R[X ] | deg(p) ≤ d}

vector space of polynomials of degree at most d (d ∈ N0)
I g1, . . . , gm ∈ R[X ], g0 := 1 ∈ R[X ] polynomials
I S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

basic closed semialgebraic set
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Quadratic modules
The system of polynomial inequalities given by g1, . . . , gm has solution
set S .

The idea was to add before the linearization many redundant
polynomial inequalities given by the p2gi where p ∈ R[X ] and
i ∈ {0, . . . ,m}. What were the consequences of all these linearized
inequalities? Adding two linearized inequalities yields the same as
linearizing the added inequalities. Therefore it is interesting to
investigate the quadratic module generated by g1, . . . , gm in R[X ]

M :=


m∑
i=0

∑
j

p2
ijgi | pij ∈ R[X ]

 ⊆ R[X ].

In the Lasserre relaxation, one has to restrict the degree of the added
inequalities, say to d (d ∈ N0). Therefore the d-truncated quadratic
module generated by g1, . . . , gm in R[X ] becomes relevant:

Md :=


m∑
i=0

∑
j

p2
ijgi | pij ∈ R[X ]k , 2k + deg(gi ) ≤ d

 ⊆ M ∩ R[X ]d .
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Exactness of Lasserre relaxations

Suppose S is compact. Then its convex hull conv S is also compact.

Suppose that S has moreover non-empty interior.
Then the degree d Lasserre relaxation describes the convex hull of S
if and only if {` ∈ R[X ]1 | ` ≥ 0 on S} ⊆ Md .

We will use only the if part which is trivial. The only if part is
elementary.

The question whether the Lasserre relaxation is eventually exact,
therefore is equivalent to the existence of d ∈ N0 such that
{` ∈ R[X ]1 | ` ≥ 0 on S} ⊆ Md
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The archimedean condition

Definition. Call M archimedean if ∀p ∈ R[X ] : ∃N ∈ N : p + N ∈ M.

Proposition. M archimedean⇐⇒ ∃N ∈ N : N −
∑n

i=1 Xi
2 ∈ M.
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It is trivial that M archimedean =⇒ S compact and one can show the
following:

The converse is not always but in really a lot of cases true,
for example if there are p1, . . . , pk ∈ M such that
for T := {x ∈ Rn | p1(x) ≥ 0, . . . , pk(x) ≥ 0} ⊇ S

(a) each pi is linear and the polyhedron T is compact, or
(b) k = 1 and T is compact [Schmüdgen 1991], or more generally
(c) k = 2 and T is compact [Prestel & Jacobi 2001].

Is S is compact with non-empty interior and the Lasserre relaxation is
eventually exact, then M is archimedean by (a) and the last slide.

Conversely, whenM is archimedean, then S is compact but is the Lasserre
relaxation eventually exact?
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First main result
S not necessarily connected with not necessarily convex connected components

Definition. We call p ∈ R[X ] strictly quasiconcave at a point x ∈ Rn if

∀y ∈ Rn : (p′(x)y = 0 =⇒ yTp′′(x)y < 0).

We call it strictly quasiconcave on a subset of Rn if it is strictly
quasiconcave at each of its points.

Theorem [Kriel & S.]. Suppose M is archimedean and
T := S ∩ ∂ conv S ⊆ intS . For each i ∈ {1, . . . ,m}, let gi be strictly
quasiconcave on {x ∈ T | gi (x) = 0}. Then the Lasserre relaxation is
eventually exact.

Remark. Under the conditions of the theorem, Helton and Nie showed
in 2009 the weaker statement that conv S is the projection of a
spectrahedron. They proved this in a completely different manner by
glueing together many local Lasserre relaxations of convex pieces near
the boundary. They don’t produce an explicit description.
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First main result
Basic proof strategy. We have to show that there exists d ∈ N0 such
that {` ∈ R[X ]1 | ` ≥ 0 on S} ⊆ Md .

By a general principle, from real
algebraic geometry, or more generally from model theory or logic, it is
enough to show the following:

For all real closed extension fields R of R, setting
S̃ := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} and

M̃ :=


m∑
i=0

∑
j

p2
ijgi | pij ∈ R[X ]

 ⊆ R[X ],

we have {` ∈ R[X ]1 | ` ≥ 0 on S̃} ⊆ M̃.

A real closed field is a field admitting a field order such that the
intermediate value theorem holds for polynomials. Such an order can
be shown to be unique. The prototype of all real closed fields is R. All
proper real closed field extensions of R however admit “infinite” and
therefore “infinitesimal” elements we have to cope with.
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Second main result
S convex
Definition. We call p ∈ R[X ] g -sos-concave if there exist matrices
P0, . . . ,Pm with entries in R[X ] and m columns each such that

−p′′ =
n∑

i=0

giP
T
i Pi .

Example. Linear polynomials are trivially g -sos-concave.

Theorem [Kriel & S.]. Suppose S is convex with non-empty interior and
M is archimedean. For each i ∈ {1, . . . ,m}, let

I gi be strictly quasiconcave on {x ∈ S | gi (x) = 0}, or
I gi be g -sos-concave.

Then the Lasserre relaxation is eventually exact.

Remark. Under stronger and very technical conditions, Helton and Nie
showed in 2009 the same after changing the description of S . Our
proof builds up on a small part of their long and tedious proof. In 2010,
Sinn gave a rigorous analysis of their proof and showed that adding all
products gigj (1 ≤ i < j ≤ m) to the description of S is enough.
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An example with no exact Lasserre relaxation
Theorem [Netzer & Plaumann & S. 2010] Suppose S is convex with
non-empty interior. If S has at least one non-exposed face, then no
Lasserre relaxation of S is exact.

Remark. This does not depend on the description of S .

Example. g1 := X1 + 1, g2 := X2 − X1
3, g3 := X2, g4 := 1− X2,

m := 4, S = {(x1, x2) ∈ R2 | −1 ≤ x1, x3
1 ≤ x2, 0 ≤ x2 ≤ 1}

Note that g ′
2 =

(
−3X1

2

1

)
and g ′′

2 =

(
−6X1 0
0 0

)
.

x1

x2

non-exposed face

First main theorem is not applicable since
g2 is not strictly quasiconvex in the origin!
Second main theorem is not applicable since

g ′′
2 is not negative semidefinite on S!
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Another example with no exact Lasserre relaxation

Theorem [Gouveia & Netzer 2011] Let L ⊆ Rn be a line such that
S ∩ L has non-empty interior in L.

Let x ∈ S be an element of the
boundary of conv S ∩ L in L. Suppose that every gi vanishing at x has
vanishing derivative in direction of L at x . Then each Lasserre
relaxation of S contains strictly conv S .

Example. g1 := −(4− (X1 − 5)2 − X2
2)(1− X1

2 − X2
2), g2 := 1− X2,

g3 := 1+ X2, m := 3

x1

x2

x
First main theorem is not applicable since
g2 and g3 nowhere strictly quasiconcave!

Second main theorem is not applicable since
S not convex!
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Outlook

By Tarski’s real quantifier elimination, every projected spectrahedron is
a (convex) semi-algebraic set.

Conjecture [Helton & Nie 2009]. Every convex semi-algebraic subset of
Rn is a projected spectrahedron.

Theorem [Scheiderer]. True for n = 2.
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