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The Positivstellensatz from real algebraic geometry
In his very first and fulminant work Anneaux préordonnés, Krivine
proved in 1964 the so-called Positivstellensatz

which is essentially
equivalent to the following theorem:

To each given unsolvable (finite) system of (non-strict) polynomial
inequalities (in several variables), in the just described (less naive)
linearization procedure, you can always add finitely many blue
inequalities such that the resulting system of linear inequalities is
unsolvable.

Krivine’s work came too early to be noticed. The result was
rediscovered ten years later by each Prestel and Stengle and is often
attributed to Stengle who already saw a connection to optimization. It
can be seen as the starting point of modern real algebra. It builds upon
Artin’s solution1 of Hilbert’s 17th Problem and on Tarski’s real
quantifier elimination.

1

Every nonnegative polynomial in several variables is a sum of squares of rational
functions.
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Schmüdgen’s and Putinar’s Positivstellensätze

Another major breakthrough was Schmüdgen’s Positivstellensatz from
1991:

To each given system of polynomial inequalities with compact solution
set, if some strict polynomial inequality holds on this solution set, then
the corresponding non-strict inequality is a sum of blue inequalities.

All proofs use the Positivstellensatz (from Krivine). Schmüdgen’s
original proof uses in addition functional analysis. The first purely
algebraic proof was found by Wörmann in 1998.

In 1993, Putinar showed that products like A · B are not needed in
Schmüdgen’s theorem when the compactness assumption is replaced by
a stronger technical assumption, namely the archimedean condition,
which is for practical purposes not far from compactness.
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2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 x1x2 x2
2

x1 y3 x1x2 y1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2
y3 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 x2
2

x1 y3 y4 y1 x2
1x2 x1x

2
2

x2 y4 x2
2 x2

1x2 x1x
2
2 x3

2
y3 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

y4 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + x2

2 − 1
3 ≥ 0

C − y3 − x2
2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 x2
2

x1 y3 y4 y1 x2
1x2 x1x

2
2

x2 y4 x2
2 x2

1x2 x1x
2
2 x3

2
y3 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

y4 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 x2

1x2 x1x
2
2

x2 y4 y5 x2
1x2 x1x

2
2 x3

2
y3 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

y4 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

y5 x1x
2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 x2

1x2 x1x
2
2

x2 y4 y5 x2
1x2 x1x

2
2 x3

2
y3 y1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

y4 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

y5 x1x
2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 x1x

2
2

x2 y4 y5 y6 x1x
2
2 x3

2
y3 y1 y6 x4

1 x3
1x2 x2

1x
2
2

y4 y6 x1x
2
2 x3

1x2 x2
1x

2
2 x1x

3
2

y5 x1x
2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 x1x

2
2

x2 y4 y5 y6 x1x
2
2 x3

2
y3 y1 y6 x4

1 x3
1x2 x2

1x
2
2

y4 y6 x1x
2
2 x3

1x2 x2
1x

2
2 x1x

3
2

y5 x1x
2
2 x3

2 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 x4

1 x3
1x2 x2

1x
2
2

y4 y6 y7 x3
1x2 x2

1x
2
2 x1x

3
2

y5 y7 x3
2 x2

1x
2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 x4

1 x3
1x2 x2

1x
2
2

y4 y6 y7 x3
1x2 x2

1x
2
2 x1x

3
2

y5 y7 x3
2 x2

1x
2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 y8 x3

1x2 x2
1x

2
2

y4 y6 y7 x3
1x2 x2

1x
2
2 x1x

3
2

y5 y7 x3
2 x2

1x
2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 y8 x3

1x2 x2
1x

2
2

y4 y6 y7 x3
1x2 x2

1x
2
2 x1x

3
2

y5 y7 x3
2 x2

1x
2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 x3

1x2 x2
1x

2
2

y4 y6 y7 x3
1x2 x2

1x
2
2 x1x

3
2

y5 y7 y9 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 x3

1x2 x2
1x

2
2

y4 y6 y7 x3
1x2 x2

1x
2
2 x1x

3
2

y5 y7 y9 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 x2

1x
2
2

y4 y6 y7 y10 x2
1x

2
2 x1x

3
2

y5 y7 y9 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 x2

1x
2
2

y4 y6 y7 y10 x2
1x

2
2 x1x

3
2

y5 y7 y9 x2
1x

2
2 x1x

3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 x1x

3
2

y5 y7 y9 y11 x1x
3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 x1x

3
2

y5 y7 y9 y11 x1x
3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 y12
y5 y7 y9 y11 y12 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )
2 ≥ 0 ⇐⇒

(
a b c d e f

)



1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 y12
y5 y7 y9 y11 y12 y2





a
b
c
d
e
f



� 0



System of polynomial inequalities
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(−x2
1 − x2

2 + x1 + 4)(a+ bx1 + cx2)
(
1 x1 x2

)a
b
c

 ≥ 0



System of polynomial inequalities
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0

⇐⇒

(−x2
1 − x2

2 + x1 + 4)(a+ bx1 + cx2)
(
1 x1 x2

)a
b
c
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A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0
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redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(−x2
1 − x2

2 + x1 + 4)(a+ bx1 + cx2)
(
1 x1 x2

)a
b
c
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System of polynomial inequalities
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0
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(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒
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System of polynomial inequalities
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)
(−x2
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2 + x1 + 4)

 1
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System of polynomial inequalities
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0
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redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒
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a b c

)
(−x2

1 − x2
2 + x1 + 4)

 1 x1 x2
x1 x2

1 x1x2
x2 x1x2 x2
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System of polynomial inequalities
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−x3

1 − x1x
2
2 + x2

1 + 4x1 . . . . . .
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1x2 − x3
2 + x1x2 + 4x2 . . . . . .
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b
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System of polynomial inequalities
Systematic linearization

A x3
1 − x1 − 2x2 + 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c
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1 − x2

2 + x1 + 4 . . . . . .
−x3

1 − x1x
2
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1 + 4x1 . . . . . .
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2 + x1x2 + 4x2 . . . . . .
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System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − x4

2 + 2x2
1 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − x2
1 − x2

2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c
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2 + x1 + 4 . . . . . .
−y1 − x1x

2
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1 + 4x1 . . . . . .
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2 + x1 + 4) ≥ 0 ⇐⇒
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System of polynomial inequalities
Systematic linearization
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System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
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System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2
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(
a b c
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System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − y5 + x1 + 4 . . . . . .
−y1 − y6 + y3 + 4x1 . . . . . .
−x2
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2 + y4 + 4x2 . . . . . .
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System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − y5 + x1 + 4 . . . . . .
−y1 − y6 + y3 + 4x1 . . . . . .
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System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − y5 + x1 + 4 . . . . . .
−y1 − y6 + y3 + 4x1 . . . . . .
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2 + y4 + 4x2 . . . . . .
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System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −y3 − y5 + x1 + 4 . . . . . .
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System of polynomial inequalities
Systematic linearization

A y1 − x1 − 2x2 + 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a+ bx1 + cx2)
2(−x2

1 − x2
2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)

 −y3 − y5 + x1 + 4 . . . . . .
−y1 − y6 + y3 + 4x1 . . . . . .
−y7 − y8 + y4 + 4x2 . . . . . .



a
b
c


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Putinar’s Positivstellensatz
Denote by X := (X 1, . . . ,X n) a tuple of variables, let
g1, . . . , gm ∈ R[X ] be polynomials and set g0 := 1 ∈ R[X ].

Then S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} is called a basic
closed semialgebraic set and boolean combinations of such are called
semialgebraic.

We will always assume that g1, . . . , gm satisfy the archimedean
condition. For the purpose of this talk, it can be thought of S being
compact although it is a slightly stronger technical condition.

Theorem (Putinar). If f ∈ R[X ] satisfies f > 0 on S , then there exist
pij ∈ R[X ] such that

f =
m∑
i=0

∑
j

p2
ijgi .



Putinar’s Positivstellensatz
Denote by X := (X 1, . . . ,X n) a tuple of variables, let
g1, . . . , gm ∈ R[X ] be polynomials and set g0 := 1 ∈ R[X ].

Then S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} is called a basic
closed semialgebraic set and boolean combinations of such are called
semialgebraic.

We will always assume that g1, . . . , gm satisfy the archimedean
condition. For the purpose of this talk, it can be thought of S being
compact although it is a slightly stronger technical condition.

Theorem (Putinar). If f ∈ R[X ] satisfies f > 0 on S , then there exist
pij ∈ R[X ] such that

f =
m∑
i=0

∑
j

p2
ijgi .



Putinar’s Positivstellensatz
Denote by X := (X 1, . . . ,X n) a tuple of variables, let
g1, . . . , gm ∈ R[X ] be polynomials and set g0 := 1 ∈ R[X ].

Then S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} is called a basic
closed semialgebraic set and boolean combinations of such are called
semialgebraic.

We will always assume that g1, . . . , gm satisfy the archimedean
condition. For the purpose of this talk, it can be thought of S being
compact although it is a slightly stronger technical condition.

Theorem (Putinar). If f ∈ R[X ] satisfies f > 0 on S , then there exist
pij ∈ R[X ] such that

f =
m∑
i=0

∑
j

p2
ijgi .



Putinar’s Positivstellensatz
Denote by X := (X 1, . . . ,X n) a tuple of variables, let
g1, . . . , gm ∈ R[X ] be polynomials and set g0 := 1 ∈ R[X ].

Then S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} is called a basic
closed semialgebraic set and boolean combinations of such are called
semialgebraic.

We will always assume that g1, . . . , gm satisfy the archimedean
condition. For the purpose of this talk, it can be thought of S being
compact although it is a slightly stronger technical condition.

Theorem (Putinar). If f ∈ R[X ] satisfies f > 0 on S , then there exist
pij ∈ R[X ] such that

f =
m∑
i=0

∑
j

p2
ijgi .



Putinar’s Positivstellensatz
Denote by X := (X 1, . . . ,X n) a tuple of variables, let
g1, . . . , gm ∈ R[X ] be polynomials and set g0 := 1 ∈ R[X ].

Then S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} is called a basic
closed semialgebraic set and boolean combinations of such are called
semialgebraic.

We will always assume that g1, . . . , gm satisfy the archimedean
condition. For the purpose of this talk, it can be thought of S being
compact although it is a slightly stronger technical condition.

Theorem (Putinar). If f ∈ R[X ] satisfies f > 0 on S , then there exist
pij ∈ R[X ] such that

f =
m∑
i=0

∑
j

p2
ijgi .

Warning. “>” cannot be replaced by “≥”.
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Warning. Relies on degree cancellation: deg pij � deg f frequently oc-
curs.
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Denote by X := (X 1, . . . ,X n) a tuple of variables, let
g1, . . . , gm ∈ R[X ] be polynomials and set g0 := 1 ∈ R[X ].

Then S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} is called a basic
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compact although it is a slightly stronger technical condition.

Theorem (Putinar). If f ∈ R[X ] satisfies f > 0 on S , then there exist
pij ∈ R[X ] such that

f =
m∑
i=0

∑
j

p2
ijgi .

Warning. Even for ` ∈ R[X ] linear, that is deg ` ≤ 1: If ` ≥ 0 on S
but ` has a zero on S , then for f := ` + ε the degrees of the pij might
explode when ε > 0 tends to zero.



Putinar’s Positivstellensatz
Denote by X := (X 1, . . . ,X n) a tuple of variables, let
g1, . . . , gm ∈ R[X ] be polynomials and set g0 := 1 ∈ R[X ].

Then S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} is called a basic
closed semialgebraic set and boolean combinations of such are called
semialgebraic.

We will always assume that g1, . . . , gm satisfy the archimedean
condition. For the purpose of this talk, it can be thought of S being
compact although it is a slightly stronger technical condition.

Theorem (Putinar). If f ∈ R[X ] satisfies f > 0 on S , then there exist
pij ∈ R[X ] such that

f =
m∑
i=0

∑
j

p2
ijgi .

Hope. If by chance, for the given g1, . . . , gm, we have a degree bound N
such that for all linear f with f ≥ 0 on S we have such a representation
with deg pij ≤ N, then our “linearization” works perfectly well.



The ingenious idea of Helton & Nie
Let ` ∈ R[X ] be linear, ` ≥ 0 on S and u ∈ S with `(u) = 0.

We would
like to write ` as a weighted sum of squares of controlled degree with
weights gi . Then u is a minimizer of ` on
S = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}. Therefore, assuming some
suitable constraint qualification holds, there will exist some
λ1, . . . , λm ∈ R≥0 such that (`−

∑m
i=1 λigi )(u) = 0 (in particular

λi = 0 if gi (u) 6= 0) and (`−
∑m

i=1 λigi )
′(u) = 0. Hence

Now try to find a “sum of squares representation” with controlled
degree for the matrix polynomial Fi ,u for all i ∈ {1, . . . ,m} and u ∈ S
with gi (u) = 0. We have to define what this should be. This definition
should imply the wanted representation for `−

∑m
i=1 λigi and therefore

for `. In any case, this will need Fi ,u being positive semidefinite on S .
Helton & Nie tried to use/establish even −g ′′i positive semidefinite on
S which seems to be a too strong requirement to get optimal results.
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like to write ` as a weighted sum of squares of controlled degree with
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sos-concavity
Elements of R[X ]p×r are called matrix polynomials.
We call ATA ∈ R[X ]r×r the square of A.

Note that

ATA+ BTB =
(
AT BT

)(A
B

)
=

(
A
B

)T (
A
B

)
∈ R[X ]r×r

for all A ∈ R[X ]p×r and B ∈ R[X ]q×r . A matrix polynomial is
therefore called sos if it satisfies the following equivalent conditions:
I It is a sum of squares of (not necessarily square) matrix

polynomials (of possibly different appropriate sizes).
I It is a square of a (not necessarily square) matrix polynomial.
I It is a sum of squares of square matrix polynomials.
I It is a sum of squares of row vector polynomials.

We call a polynomial g ∈ R[X ] sos-concave if its negated Hessian
−g ′′ ∈ SR[X ]n×n is sos. For example, linear polynomials are
sos-concave. As already noticed by Helton & Nie, sos-concave gi are
completely harmless in our context.
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Concavity and quasi-concavity

The following local second-order notions are convenient for us:
We call g ∈ R[X ] on S

I concave if g ′′(x) � 0 for all x ∈ S ,

I strictly concave if g ′′(x) ≺ 0 for all x ∈ S ,
I quasi-concave if vTg ′′(x)v ≤ 0 for all x ∈ S and v ∈ Rn satisfying

g ′(x)v = 0,
I strictly quasi-concave if vTg ′′(x)v < 0 for all x ∈ S and

v ∈ Rn \ {0} satisfying g ′(x)v = 0.
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Hol & Scherer’s Positivstellensatz
Remember our task to find a “sum of squares representation” of

Fi ,u =

∫ 1

t=0

∫ t

s=0
(−g ′′i )(u + s(X − u)) ∈ SR[X ]n×n

for all i ∈ {1, . . . ,m} and u ∈ S with gi (u) = 0 with degree
independent of u.

Idea of Helton & Nie: If gi is not necessarily
sos-concave but strictly concave on S , then use the following
generalization of Putinar’s Positivstellensatz to matrix polynomials:

Theorem (Hol & Scherer). If F ∈ SR[X ]r×r satisfies F � 0 on S , then
there exist sos matrix polynomials Pi ∈ SR[X ]r×r such that

F =
m∑
i=0

giPi .
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Helton & Nie’s Positivstellensatz

The following is the needed quantitative version of Hol & Scherer:

Theorem (Helton & Nie). To any given r ,N ∈ N, there exists D ∈ N
(depending on n, m, g1, . . . , gm, r and N) such that for all
F ∈ SR[X ]r×r satisfying ‖F‖ ≤ N and F � 1

N on S , there exist sos
matrix polynomials Pi ∈ SR[X ]r×r of degree at most D such that

F =
m∑
i=0

giPi .

The proof of this was initially hard but Kriel found in his master’s
thesis an amazingly short way of reducing this to Hol & Scherer.
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Let again i ∈ {1, . . . ,m} and u ∈ S with gi (u) = 0 and consider

Fi ,u =

∫ 1

t=0

∫ t

s=0
(−g ′′i )(u + s(X − u)) ∈ SR[X ]n×n.

If gi is sos-concave, then Fi ,u is an sos matrix polynomial of degree at
most deg(gi )− 2.

If gi is strictly concave on S , then Fi ,u � 0 on S and by Hol & Scherer
Fi ,u is sum of sos matrix polynomials weighted by the gi . Applying
Helton & Nie’s quantitative version of Hol & Scherer’s result, the
degree of the sos matrix polynomials in these representation can be
bounded uniformly in u.
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look at `−

∑m
i=1 λi g̃i where g̃i = gih(gi ) for a one variable polynomial

h ∈ R[T ] making h(gi ) > 0 on S , g̃i strictly concave on S and
S̃ ∩ U = S for some open set U.
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Suppose now that S has non-empty interior and
each gi is quasi-concave on Si := {x ∈ Rn | gi (x) = 0}.

Then it is easy to see that Si ⊆ ∂S and therefore ∂S =
⋃m

i=1 Si .

By the described technique, you still get more or less the same situation
except that g̃i is strictly concave only near the boundary of S .



Suppose now that S has non-empty interior and
each gi is quasi-concave on Si := {x ∈ Rn | gi (x) = 0}.

Then it is easy to see that Si ⊆ ∂S and therefore ∂S =
⋃m

i=1 Si .

By the described technique, you still get more or less the same situation
except that g̃i is strictly concave only near the boundary of S .

Helton & Nie therefore use compactness of the boundary of S to cover it
with finitely many small balls intersecting S only where g̃i is strictly con-
cave.

On each such ball, they do a moment relaxation and glue together
the obtained spectrahedral liftings to a single semidefinite representation
(which does not come from a moment relaxation anymore).
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except that g̃i is strictly concave only near the boundary of S .

We had the following new idea: Establish an additional property of h ∈
R[T ] so that the Hessian of g̃i = gih(gi ) decays rapidly in norm when
moving from the boundary to the inside of S .

While double-integrating
on the line segment in

Fi ,u =

∫ 1

t=0

∫ t

s=0
(−g ′′i )(u + s(X − u)) ∈ SR[X ]n×n

you accumulate very close to the boundary so much positive-definiteness
that some of it will stay until you arrive at the inner end of the segment.
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Main Theorem

Theorem (Kriel & S.) Suppose S is convex with non-empty interior and
each gi is sos-convex or quasi-concave on Si . Then the moment
relaxations of sufficiently high degree are exact.

Remark. By different and much more complicated techniques, Helton
& Nie get a similar result where they impose an ugly condition on the
hypersurfaces defined by the equations gi = 0 even outside of S .
However, they have to alter the description of S not only in the proof
but also for building the moment relaxation. In his diploma thesis, Sinn
showed that it is enough to add the inequalities gigj ≥ 0 to the
description in order to make their proof work.
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Outlook

By Tarski’s real quantifier elimination, every projected spectrahedron is
a (convex) semi-algebraic set.

Conjecture (Helton & Nie). Every convex semi-algebraic subset of Rn is
a projected spectrahedron.

Theorem (Scheiderer). True for n = 2.
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