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where
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The feasible regions {x € R" | p1(x) > 0,..., pm(x) > 0} of
polynomial optimization problems are also called basic closed
semi-algebraic sets. They are given by a system of polynomial
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Linear optimization problems (LPs)

A linear optimization problem or linear program is a polynomial
optimization problem where both the objective and the constraints are
of degree at most 1.

The feasible regions of LPs
are (closed convex) polyhedra.
They are given by systems of
linear inequalities.

In 1979, Leonid Genrikhovich Khachiyan [¥1952, 12005] showed that
LPs can be solved quickly (in polynomial time).

In practice, one can today solve LPs with n ~ m ~ 10°.

Can a POP be reduced to an LP?
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The Positivstellensatz from Real Algebraic Geometry

In his very first and fulminant work Anneaux préordonnés, Jean-Louis
Krivine [*¥1939] proved in 1964 the so-called Positivstellensatz which is
essentially equivalent to the following theorem:

To each given infeasible POP, in the just described (less naive)
linearization procedure, you can always add finitely many blue
inequalities such that the resulting LP is infeasible.

Krivine's work came too early to be noticed and was not noticed until
forty years later by Prestel. Now it can be seen as a starting point of
modern real algebra. It builds upon Artin’s solution! of Hilbert's 17th
Problem and on Tarski's real quantifier elimination. The result was
rediscovered some years later by Prestel and Stengle.

1Every nonnegative polynomial in several variables is a sum of squares of rational
functions.
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Schmiidgen’s Positivstellensatz

An other major breakthrough was Konrad Schmiidgen's [¥1947]
Positivstellensatz from 1991 which is essentially equivalent to the
following theorem:

To each given POP with compact feasible region, in the just described
(less naive) linearization procedure, if you add all blue inequalities, then
the optimal values of the original POP and of the resulting “infinite LP"
coincide.

All proofs use the Positivstellensatz (from Krivine). Schmiidgen's
original proof uses functional analysis. The first algebraic proof was
found by Woérmann in 1998.

In 1993, Mihai Putinar [¥1955] showed that products like A - B are not
needed in Schmiidgen's theorem when the compactness assumption is
replaced by a stronger technical assumption, namely the archimedean
condition, which is for practical purposes not far from compactness.
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redundant families (parametrized by a, b, c,...):

DWW
VIV IV IV
O O O o



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A X13 - X1 — 2x
AB — xf’x§ + ... + x22 + %xz
B — X3+ 22 — 2gx2 + X8
C — X12 — x22 +  x

redundant families (parametrized by a, b, c,...):

(a+ bxi + cxo + dxf + ex1Xo + fx22)2 >0

—+

DWW

VIV IV IV

o O O o



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A 3 - xa - 20 + 1
AB — xf’xg + ... + x22 + %xz — %
B — x§+2x12—2X1X2—|— x22—§
C - X3 - X3 + x1 + 4
redundant families (parametrized by a, b, c,...):
(a+bx1+cx2—|—dxf—|—ex1x2+fx22)220 —
1
X1
(a b ¢ d e f) X2 (1 X1 X X2 x1x0 X2)
X2 1 2
X1X2
2

VIV IV IV
o o oo

N O Q0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A X3
AB — xf’ xg + ...
B — X3 4+ 2x3
C - X

_|_

— 2x1X

+
_|_
+

2X2

2

§X§
X2

X1

redundant families (parametrized by a, b, c,...):

—+

(a+ bxi + cxo + dxf + ex1Xo + fx22)2 >0

X1X2
X1 X2

DWW

VIV IV IV

o O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A x13 - Xy — 2xp +
AB — xf’xg + ... + x22 + %xz —
B — X3 4+ 23 — 2% + x5 —
C — X12 — x22 4+ x3 +

redundant families (parametrized by a, b, c,...):

1 X1 X2 X12 X1 X

X 2 3 2

1 X1 X1X2 X1 X1 X2

2 2 2

X2 X1X2 X5  X{X2 X1X5

(a bocde f) x2 x3 x2x: <t x3x
1 1 17X2 1 17%2

X1X2 x12x2 x1x22 X13x2 X12X22

2 2 3 2,2 3

DWW
VIV IV IV
O O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A Xf — X1 — 2x +
AB — xf’xg + ... + x22 + %xz —
B — X3 4+ 23 — 2% + x5 —
C — X12 — x22 4+ x3 +

redundant families (parametrized by a, b, c,...):

1 X1 X2 X12 X1 X

X 2 3 2

1 X1 X1X2 X1 X1 X2

2 2 2

X2 X1X2 X5 X{X2  X1X5

(a bocde f) x2 X2 x2x: x4 x3x
1 1 1X2 1 1X2

X1X2 xfxz X]_X22 xfxz X12X22

2 2 3 2,2 3

DWW
VIV IV IV
O O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A yi - X1 — 2X2
AB — xf’xg + ...+ x22 + %xz
B — X3+ 22 — 2gx2 + X8
C — X12 — x22 +  x

irredundant families (parametrized by a, b, c,...):

1 X1
X1 Xf
X X1 X
(a b c de f)| 5 7
X1 )41
X1X2 x12x2

2 2

X2 X12
X1x2

X22 X12 X2
X12 X2 Xf
X1 X22 xl3 X2

B x

—+

X1X2
X1 X2

2
X1%2

DWW

IV IV IV IV

o O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A yi - X1 — 2X2
AB — xf’xg + ...+ x22 + %xz
B — X5+ 23 - 2axx + X8
C — X12 — x22 +  x

irredundant families (parametrized by a, b, c,...):

1 X1
X1 Xf
X X1 X
(a b c de f)| 5 7
X1 )41
X1X2 x12x2

2 2

X2 X12
X1x2

X22 X12 X2
X12 X2 Xf
X1 X22 X13 X2

B x

—+

X1X2
X1 X2

2
X1%2

DWW

IV IV IV IV

o O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A yi - X1 — 2X2
AB — xf’xg + ...+ x22 + %xz
B — oy o+ 23 - 20 + X3
C — X12 — x22 +  x

irredundant families (parametrized by a, b, c,...):

1 X1
X1 Xf
X X1 X
(a b c de f)| 5 7
X1 )41
X1X2 x12x2

2 2

X2 X12
X1x2

X22 X12 X2
X12 X2 Xf
X1 X22 X13 X2

B x

—+

X1X2
X1 X2

2
X1 X2
X1X§’

DWW

IV IV IV IV

o O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A yi - X1 — 2X2
AB — xf’xg + ...+ x22 + %xz
B — oy o+ 2¢ - 20 + X3
C — X12 — x22 +  x

irredundant families (parametrized by a, b, c,...):

1 X1
X1 X12
X X1 X
(@ b c d e f) 2
X1 n
X1X2 x12x2

2 2

X2 X12
X1x2

X22 X12 X2
X12 X2 Xf
X1 X22 X13 X2

B x

—+

X1X2
X1 X2

2
X1 X2
Xlxg

DWW

IV IV IV IV

o O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A v o- X1
AB — xf’xg + ... + x22
B -y o+ 23 = 2x1x
C - y3 - x3

+ o+ o+

2X2

2

§X§
X2

X1

irredundant families (parametrized by a, b, c,...):

1 X1
X1 3
X X1X
(@ b c d e f) 2 172
3 1
X1X2 x12x2
2 2

X2

X1X2
3
2

x1x3

3
X3

¥3

Y1
X12 X2
xt
X13 X2

2.2
X1 X2

+

X1X2
X1 X2

2
X1 X2
Xlxg

D WFW[R

VIV IV IV

o O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A v o- X1
AB — xf’x§ + ... + x22
B -y + 23 — 2xix
C - y3 - x3

+ o+ o+

2X2

2

§X§
X2

X1

irredundant families (parametrized by a, b, c,...):

1 X1
X1 3
X X1X
(@ b c d e f) 2 172
3 1
X1X2 x12x2
2 2

X2

X1X2
3
2
2

3
X3

¥3

Y1
X12 X2
xt
X13 X2

2.2
X1 X2

+

X1X2

2
X1%2
Xlxg

D WFW[R

VIV IV IV

o O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A

AB — xf’xg +
B - Yo +
C _

i

2y3
y3

+

X1
3
2ys

2
X2

+
_|_
+

2X2

2

§X§
X2

X1

+

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

X1
¥3
ya
n
X{ X2
X1X5

X1 X3
X3

¥3

y1
X12 X2

Xt
X7 X2
X1 X2

ya
X1 X3
X1X§’

D WFW[R

IV IV IV IV

o O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A

AB — xf’x§ +
B - Yo +
C _

i

2y3
y3

+

X1
3
2ys

2
X2

+
_|_
+

2X2

2

5’%
X2

X1

+

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

X1
¥3
ya
n
X{ X2
X1X5

X1 X3
X3

¥3

y1
X12 X2

Xt
X7 X2
X1 X2

ya
X1 X3
xlxg’

D WFW[R

IV IV IV IV

o O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A

AB — xf’x§ +
B - Yo +
C _

i

2y3
y3

+

X1 — 2X2
ys + %X2
2y + s
5 + xi

+

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

X1
¥3
ya
n
X12X2
X1X5

X2 y3
Y4 n
vs  xix
X12 X2 xf
X153 XPxo
X3 xX2x3

ya
X1 X3
X1X§’

D WFW[R

IV IV IV IV

Y5

o O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A

AB — x13x§1 +
B - Yo +
C _

i

2y3
y3

+

X1 — 2X2
ys + %X2
2y + s
5 + xi

+

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

X1
¥3
ya
n
X12X2
X1X5

X2 y3
Y4 n
¥s  xix
X12 X2 xf
X153 XPxo
X3 xX2x3

Y4
X1 X2
X1X22
X1X§’

D WFW[R

IV IV IV IV

Y5

o O O o

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A

AB - Y6 +
B - y2 +
C _

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

i
2y3
y3

+

X1
¥3
Ya
n
Y6

X1
Y5
2ys
Y5

+
_|_
+

X2 Y3
Y4 n
Y5 Y6
Y6 Xf
X1 x22 X13X2
B xR

2X2

2

3%2
Y5
X1

+

D WFW[R

Y6
X1X22
X1 X2
X1 xg’

IV IV IV IV
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A

AB - Y6 +
B - y2 +
C _

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

i
2y3
y3

+

X1
¥3
Ya
Y1
Y6

X1
Y5
2ys
Y5

+
_|_
+

X2 Y3
Y4 n
Y5 Y6
Y6 Xf
X1 x22 X13X2
B xR

2X2

2

3%2
Y5
X1

+

D WFW[R

Y6
X1 X22
X1 X2
X1 xg’

IV IV IV IV
oo oo

X1X3

N O QA 0 T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A Y1
AB - Y6 + ...
B -y + 2p
C - »

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

+

X1
¥3
ya
»n
Y6
y7

X1
Y5
2ys
Y5

X2
Ya
Y5
Y6
Y7

w

— 2% +
+ §X2 -
+ 5 -
+ x1 +

y3 Y4
Y1 Y6
Y6 y7
xf xf’xz

3 2.2

DWW =
VIV IV IV

o O O o

N 0O QA 0O T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A Y1
AB - Y6 + ...
B -y + 2p
C - »

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

+

X1
¥3
ya
»n
Y6
y7

X1
Y5
2ys
Y5

X2
Ya
Y5
Y6
Y7

w

— 2% +
+ §X2 -
+ 5 -
+ x1 +

y3 Y4
Y1 Y6
Yo y7
xf xf’xz

3 2.2

DWW =
VIV IV IV

o O O o

N 0O QA 0O T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A Y1
AB - Y6 + ...
B -y + 2p
C - »

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

+

X1
¥3
ya
»n
Y6
y7

X1
Y5
2ys
Y5

X2
Ya
Y5
Y6
Y7

w

— 2% +
+ §X2 -
+ 5 -
+ x1 +

y3 Y4
Y1 Y6
Yo y7
3] Xf X2

3 2.2

DWW =
VIV IV IV

o O O o

N 0O QA 0O T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A Y1
AB - Y6 + ...
B -y + 2p
C - »

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

+

X1
¥3
ya
»n
Y6
y7

X1
Y5
2ys
Y5

X2
Ya
Y5
Y6
Y7

— 2% +
+ §X2 -
+ 5 -
+ x1 +

y3 Y4
Y1 Y6
Yo y7
3] Xf X2

3 2.2

DWW =
VIV IV IV

o O O o

N 0O QA 0O T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A

Y1
AB - Y6 + ...
B -y + 2p
C - »

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

+

X1
¥3
ya
»n
Y6
y7

X1
Y5
2ys
Y5

X2
Y4
Y5
Y6
y7
Yo

+ o+ o+

3
»
Y6
Y8

X1X2

2% +
Y5 -
X1 +

ya
Y6

y7

2

DWW =
VIV IV IV

Y5
y7
Y9
X1 X2
X]_Xé3
Y2

o O O o
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A

Y1
AB - Y6 + ...
B -y + 2p
C - »

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

+

X1
¥3
ya
»n
Y6
y7

X1
Y5
2y,
Y5

X2
Y4
Y5
Y6
y7
Yo

_l’_
_|_
_l’_

2xp +
Y5 -
X1 +

3 ya
Y1 Y6
Y6 y7
y8 Xf X2
Bxo xR
X12X22 X1 xg’

DWW =
VIV IV IV

Y5
y7
Y9
X1 X2
X1X23
Y2

o O O o

N 0O QA 0O T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A Y1
AB - Y6 + ...
B -y + 2p
C - »

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

+

X1
¥3
ya
»n
Y6
y7

X1
Y5
2y,
Y5

X2
Y4
Y5
Y6
y7
Yo

_l’_
_|_
_l’_

3
»
Y6
Y8
Y10

X1X2

2xp +
Y5 -
X1 +

ya
Y6
yr
Y10
X1%2
X1X2

DWW =
VIV IV IV

Y5
y7
Y9
X1 X2
X1X23
Y2

o O O o

N 0O QA 0O T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A n
AB - Y6 + ...
B -y + 2p
C - )

irredundant families (parametrized by a, b, c,...):

(@ b c d e f)

+

X1
¥3
ya
»n
Y6
y7

X1
Y5
2y,
Y5

X2
Y4
Y5
Y6
y7
Yo

_l’_
+
_l’_

3
»
Y6
Y8
Y10

2xp +
Y5 -
X1 +

ya
Y6
yr

Y10
X1X2

2 3
X1X)

DWW =
VIV IV IV

Y5
y7
Y9
X1 X2
X1X23
Y2

o O O o

N 0O QA 0O T W



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A n
AB - Y6 + ...
B -y + 2p
C - )

irredundant families (parametrized by a, b, c,...):

(a b c d e f)

+

X1
¥3
Ya
yi
Y6

X1
Y5
2y,
Y5

X2
Y4
Y5
Y6
y7
Yo

_l’_
_|_
_l’_

3
»n
Y6
8
Y10
yi

2X2

2

3%2
Y5
X1

Ya
Y6
Y7
Y1io
Y11

+

_l’_

D WFW[R

Y5
Y7
Yo
Y1
X1X5
2

IV IV IV IV
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A n
AB - Y6 + ...
B -y + 2p
C - )

irredundant families (parametrized by a, b, c,...):

(a b c d e f)

+

X1
¥3
Ya
yi
Y6

X1
Y5
2y,
Y5

X2
Y4
Y5
Y6
y7
Yo

_l’_
+
_l’_

3
»n
Y6
8
Y10
yi

2X2

2

3%2
Y5
X1

Ya
Y6
Y7
Y1io
yi1

+

_l’_

D WFW[R

Y5
Y7
Yo
Y1
X1X5
2

IV IV IV IV

o O O o
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A n
AB - Y6 + ...
B -y + 2p
C - )

irredundant families (parametrized by a,

(@ b c d e f)

+

X1
Y5
2y,
Y5

X1
¥3
ya
»n
Y6
y7

X2
VZ
Y5
Y6
y7
Yo

_l’_
_|_
_l’_

2X2

2

3%2
Y5
X1

b,c,...):

3
n
Y6
8
Y10
Y11

+

ya
Y6

Y10
yi1
Y12

D WFW[R
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A i -
AB - Y + ... +
B — y2 + 23 —
C - B -

irredundant families (parametrized by a,

X1
Y5
2y,
Y5

X1
¥3
ya
»n
Y6
y7

X2
VZ
Y5
Y6
y7
Yo

_l’_
_|_
_l’_

2X2

2

3%2
Y5
X1

b,c,...):

3
n
Y6
8
Y10
yi

+

ya
Y6

Y10
yi1
Y12

D WFW[R

Y5
y7
Yo
yi1
Y12
y2

IV IV IV IV
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A xf’ - X1 — 2x0 —+
AB - x4+ .+ x5+ %XQ -

Wl =

AV



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A xf’ - X1 — 2x0 —+
AB - x4+ .+ x5+ %XQ -
B — X3 4+ 2 — 23 + X2 —
C — X12 - X22 +  x3 +

D WFWR

VIV IV IV

o O O O



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A xf’ - X1 — 2x0 —+
AB - x4+ .+ x5+ %XQ -
B — X3 4+ 2 — 23 + X2 —
C — X12 — X22 +  x3 +

redundant families (parametrized by a, b, c,...):

(a+bxy +cx0)?(—xF — x5 +x1+4)>0

D WFWR

VIV IV IV

o O O O



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A xf’ — xx — 2% + 1 > 0
AB - X33 + ...+ X3+ $x - % > 0
B — x§ + 2x12 — 2% —+ X22 -3 =20
C - X - x5 + x1 + 4 >0
redundant families (parametrized by a, b, c,...):

(a+bxy +cx0)?(—xF — x5 +x1+4)>0 =

1 a
(—x¢ — X3 +x1+ 4) (@ b o)|x|](1 xx x)[b|=>0
X2 C



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A xf’ — xx — 2% + 1 > 0
AB - X33 + ...+ X3+ $x - % > 0
B — x§ + 2x12 — 2% —+ X22 -3 =20
C - X - x5 + x1 + 4 >0
redundant families (parametrized by a, b, c,...):

(a+bxy +cx0)?(—xF — x5 +x1+4)>0 =

1 a
(a b C) (—x12 — x22 +x1+4) [ x (1 X1 X2) b| >0
X2 C



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A xf’ - X1 — 2x0 —+
AB - x4+ .+ x5+ %XQ -
B — X3 4+ 2 — 23 + X2 —
C — X12 - X22 +  x3 +

redundant families (parametrized by a, b, c,...):
(a4 bxi + cx)*(—xF — x5 +x1+4) >0
1 X1 X2

(a b C) (—Xl2 — x22 +x1+4)[x ¥ xx
X2  X1X2 X22

DWW =
VIV IV IV

!

o O O O



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A xf’ — xx — 2% + 1 > 0
AB - X33 + ...+ X3+ $x - % > 0
B — x§ + 2x12 — 2% —+ X22 -3 =20
C - X - x5 + x1 + 4 >0
redundant families (parametrized by a, b, c,...):
2 —x3+x1+4 a
(a b c) —X3—X1X22+x12—|—4x1 b| >0

—xXZxp — X5 +x1x2+4x2 ... ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A Xf’ — xx — 2% + 1 > 0
AB - X33 + ...+ X3+ $x - % > 0
B — x§ + 2x12 — 2% —+ X22 -3 =20
C - X - x5 + x1 + 4 >0
redundant families (parametrized by a, b, c,...):
2 —x3+x1+4 a
(a b c) —x3—x1X22+x12—|—4x1 b| >0

—xXZxp — X5 +x1x2+4x2 ... ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A yi - xx — 2% + 1 > 0
AB - X3 + ...+ x5 + %XQ - % > 0
B — x§ + 2x12 — 2% —+ X22 -3 =20
C - X - x5 + x1 + 4 >0
irredundant families (parametrized by a, b, c,...):
2 —x3+x1+4 a
(a b C) —y1—x1x22+x12—|—4x1 b| >0

—xXZxp — X5 +x1x2 +4x2 ... ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A yi - xx — 2% + 1 > 0
AB - X3 + ...+ x5 + %XQ - % > 0
B — xé‘ + 2x12 — 2% —+ X22 -3 =20
C - X - x5 + x1 + 4 >0
irredundant families (parametrized by a, b, c,...):
X2 —x2+x +4 a
(a b C) —y1—x1x22+x12—|—4x1 b| >0

—xXZxp — X5 +x1x2 +4x2 ... ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A i - X1 — 20 + 1 >0
AB - X3 + ...+ x5 + %XQ - % > 0
B — Yo + 2x12 — 2% —+ X22 -3 =20
C - X - x5 + x1 + 4 >0
irredundant families (parametrized by a, b, c,...):
2 —x3+x1+4 a
(a b C) —y1—x1x22+x12—|—4x1 b| >0
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A yi — x1 — 2% + 1 >0
AB - Y + ... + yv5 + %XQ — % > 0
B -y + 23 — 2y + 5 — 3 =2 0
C - 3 - y5 + xx + 4 >0
irredundant families (parametrized by a, b, c,...):
-v3—ys+x1+4 ... ... a
(@b o)|-n-yvt+ty+da ... ... bl >0
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A

AB - ¥ +
B - y2 +
C _

irredundant families (parametrized by a, b, c,...):

yvo — x1 -
..+ V5 +
2y3 — 2ya +
B - y5 +

3= ystxit+4
—y1— Y6+ y3+4x
—yr—ystyst+4dx

2X2

2

3%2
Y5
X1
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Moment relaxation

Lasserre relaxation (Jean Lasserre [¥1953])

We now formalize the informally described linearization procedure.

Since they are computationally expensive, we will try to avoid products
like A- B in the constraints redundantly added before linearization.

Instead of products, we allow for sums which do not have any effect
(since linearization commutes with taking sums) but are good for
theoretical purposes (redundant constraints will form a convex cone).

The notion of (truncated) quadratic module will capture the generation
of redundant constraints by multiplying with squares and adding:
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Quadratic modules

Definition: Let A be a commutative ring (e.g., A=R[X]) and T C A.
Then T is called a quadratic module in A if

» 1T,
» p+qge T forall p,ge T and
» ’pec Tforallhe Aand pe T.

Note that in R[X] each quadratic module is in particular a convex
cone. The smallest quadratic module is the set

J4
A= {Zh,?MeNo,h,- EA}
i=1

of all sums of squares.
More generally, the quadratic module generated by p1,...,pn € Ais

T(pla"'apm) :ZA2+ZA2P1++ZA2Pm

where Y>> A%p := {sp | s € Y A%} for p € A.
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Truncated quadratic modules

Definition: Let m € No, p1,...,pm € R[X] and k € Np. In the vector
space R[X], of polynomials of degree at most k, we denote the convex
cone

(RIXL S RIXP)+RIXINS RIXP o)+ -+ (RIX1NS RIXP i)

by Tx(pi,...,pm) and call it the k-truncated quadratic module
associated to p1, ..., pm.

It is easy to show that
RIXJ« N S RIXPp = {20, h2p | hi € RIX], 2deg(hi) < k — deg(p)}
for k € Ny and p € R[X]\ {0}.

The inclusion Ti(p1,...,pm) C R[X]xN T(p1,...,pm) is in general far
from being an equality.

The higher we choose the degree of relaxation k, the more redundant
constraints we will add before linearization. More redundant constraints
improve the linearization but enlarge also the resulting SDP.
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Moment relaxation
Let a POP

(P) minimize f(x) over x € R" subject to p1(x) > 0,...,pm(x) >0
be given (m,n € No, f,p1,...,pm € R[X]).
Let k € Np be the relaxation degree such that f, p1,..., pm € R[X]k.

The degree kK moment relaxation (or Lasserre relaxation) of (P) is the
SDP given by

(Px) minimize L(f) over L e R[X];
subject to  L(Tk(p1,--.,pPm)) € R>p and
[(1) =1

Here R[X]} is the dual space of R[X]x and (Px) can be written as an
SDP by implementing the L(X®) (a € N, |a| < k) with new variables
y;i as before.
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Trivial properties of the moment relaxation

Proposition: Let m,n, k € No, f,p1,...,pm € R[X]x and let (Px) be
the k-th moment relaxation of the POP

(P) minimize f(x) over x € R" subject to x € S

where S 1= {xeR"\pl( )>0,...,pm(x) > 0}. Then

(@) P> > P, > P 3>Pi,>P; > P

(b) If L is integration with respect to a probability measure on S, then
L is a feasible solution of (Py) with L(f) > P*.

(c) If (Px) has an optimal solution L* whose restriction to R[X]y is
integration with respect to a measure ;. on S for some
te{l,..., k} with f € R[X], then equality holds everywhere in
(a) and each element of the support of 1 is an optimal solution of

(P).
(d) In the situation of (c), if (P) has moreover a unique optimal
solution x*, then x* = (L*(X1),...,L*(X,)) and moreover

L*(p) = p(x*) for all p € R[X];.
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Truncated moment problem

Strategy to solve a polynomial optimization problem (P):

(1) Choose relatively small relaxation degree k.

(2) Solve moment relaxation (Px) using an SDP solver. If it takes too
long, then go to another summer school to learn more.

(3) Hope that you get an optimal solution L* of (Py) integrating f
with respect to a measure 2 on R”. If not, increase k and restart.

(4) Compute the support of such a ;2 and check whether it is
contained in S. If not, increase k and restart.

(5) The optimal values of (P) and (Py) coincide and each element of
the support of 1 is an optimal solution x* of (P).

~»Truncated moment problem: Need criteria when L € R[X]}
restricted to some subspace comes from a measure. Need to compute
the support of the measure.

Fact (existence of quadrature rules, Bayer and Teichmann 2006):
If L € R[X]; comes from a measure, it also comes from a finitely
supported measure.
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Let d € N and L € R[X]5, with L(3°R[X]%) € Rxo.

Task: If possible, try to find a finitely supported measure ;. such that L
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Let d € N and L € R[X]5, with L(3°R[X]%) € Rxo.

Task: If possible, try to find a finitely supported measure ;. such that L
(or at least L|r[xj, for some ¢ < 2d not too small) is integration with
respect to /.

Would like to obtain:
X11y+ oy Xlny o3 Xrls++-, Xm € Rand a1,...,a, € R such that

L(p) = Z a,gp(x,-l, ooy Xin) for all p € R[X],.
i=1
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Let d € N and L € R[X]5, with L(3°R[X]%) € Rxo.

Task: If possible, try to find a finitely supported measure ;. such that L
(or at least L|r[xj, for some ¢ < 2d not too small) is integration with
respect to /.

Would like to obtain:
X11y+ oy Xlny o3 Xrls++-, Xm € Rand a1,...,a, € R such that
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Truncated moment problem

Let d € N and L € R[X]5, with L(3°R[X]%) € Rxo.

Task: If possible, try to find a finitely supported measure ;. such that L
(or at least L|r[xj, for some ¢ < 2d not too small) is integration with
respect to /.

Would like to obtain:
X11y ey Xlny e o3 Xrly+ -+, Xm € R and a € R" such that

P(Xll,--~7X1n)
L(p) = << ) a,a> for all p € R[X],.
p(Xr17-~7Xrn)



Truncated moment problem

Let d € N and L € R[X]5, with L(3°R[X]%) € Rxo.

Task: If possible, try to find a finitely supported measure ;. such that L
(or at least L|r[xj, for some ¢ < 2d not too small) is integration with
respect to /.

Would like to obtain:
X11y ey Xlny e o3 Xrly+ -+, Xm € R and a € R" such that

L(p) = <p <( x,1> ( )) a,a> for all p € R[X],.



Truncated moment problem
Let d € N and L € R[X]5, with L(3°R[X]%) € Rxo.

Task: If possible, try to find a finitely supported measure ;. such that L
(or at least L|r[xj, for some ¢ < 2d not too small) is integration with
respect to /.

Would like to obtain:
diagonal matrices Dy,...,D, € R™" and a € R" such that

L(p) = (p(D1, ..., Dp)a, a) forall p € R[X],.



Truncated moment problem
Let d € N and L € R[X]5, with L(3°R[X]%) € Rxo.

Task: If possible, try to find a finitely supported measure ;. such that L
(or at least L|r[xj, for some ¢ < 2d not too small) is integration with
respect to /.

Would like to obtain:
commuting matrices My, ..., M, € SR™" and a € R’ such that

L(p) = (p(My,...,M,)a,a) for all p € R[X],.



Truncated moment problem
Let d € N and L € R[X]5, with L(3°R[X]%) € Rxo.

Task: If possible, try to find a finitely supported measure ;. such that L
(or at least L|r[xj, for some ¢ < 2d not too small) is integration with
respect to /.

Would like to obtain:
a finite-dimensional euclidean vector space V, commuting self-adjoint
endomorphisms My, ..., M, of V and a € V such that

L(p) = (p(M, ..., My)(a),a) forall p € R[X],.



Truncated moment problem
Let d € N and L € R[X]5, with L(3°R[X]%) € Rxo.

Task: If possible, try to find a finitely supported measure ;. such that L
(or at least L|r[xj, for some ¢ < 2d not too small) is integration with
respect to /.

Would like to obtain:
a finite-dimensional euclidean vector space V, commuting self-adjoint
endomorphisms My, ..., M, of V and a € V such that

L(p) = (p(M, ..., My)(a),a) forall p € R[X],.

Idea: If we had L € R[X]*, L(p?) > 0 for all p € R[X]\ {0} and if V
were allowed to be infinite-dimensional, then we could take V := R[X]
with the scalar product defined by (p, q) := L(pgq) for all p,q € R[X],
M;: R[X] — R[X], pr— Xipforall i € {1,...,n} and a:=1 € R[X].



Truncated GNS like construction
Let d € N and L € R[X]3, with L(3" R[X]2) C Rxo.
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Let d € N and L € R[X]3, with L(3°R[X]%) € R>q. Then

UL :={peR[X]4 | Vg € R[X]q : L(pq) = 0}

is a subspace of R[X],; which we call the GNS kernel of L.
We call the quotient vector space V) := R[X]q4/U, the
GNS representation space of L. It is easy to show that

(P:q):=Llpq)  (p,q € R[X]4)

defines a scalar product on V; which we call the GNS scalar product
on V,. This makes V| into a finite-dimensional euclidian vector space.
We call the orthogonal projection 7, from V| to its subspace

{P| p € R[X]g—1} the GNS truncation of L.



Truncated GNS like construction
Let d € N and L € R[X]3, with L(3°R[X]%) € R>q. Then

UL :={peR[X]4 | Vg € R[X]q : L(pq) = 0}

is a subspace of R[X],; which we call the GNS kernel of L.
We call the quotient vector space V) := R[X]q4/U, the
GNS representation space of L. It is easy to show that

(P:q):=Llpq)  (p,q € R[X]4)

defines a scalar product on V; which we call the GNS scalar product
on V,. This makes V| into a finite-dimensional euclidian vector space.
We call the orthogonal projection 7, from V| to its subspace

{P| p € R[X]g—1} the GNS truncation of L.

Then for each i € {1,...,n},

Mpi: T Vi — mVi, pe m(Xip) (p € R[X]g-1)

is a self-adjoint endomorphism of m; V; which we call the /-th truncated
multiplication operator of L.
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Truncated GNS like construction
Let d € N and L € R[X]3, with L(3°R[X]%) € R>q. To show that

Mpi: T Vi — m Vi, p— 7 (Xip) (p € R[X]q4-1)

is indeed well-defined, note that 7, (X;p) = 0 for all p € R[X]q_1 N Uy,
for if you choose g € R[X]y_1 with g = 7, (Xip), then




Truncated GNS like construction
Let d € N and L € R[X]3, with L(3°R[X]%) € R>q. To show that

Mpi: T Vi — m Vi, p— 7 (Xip) (p € R[X]q4-1)

is indeed well-defined, note that 7, (X;p) = 0 for all p € R[X]q_1 N Uy,
for if you choose g € R[X]y_1 with g = 7, (Xip), then

peU,

aenVi >L_L(Xqu)=L(P(Xiq))=<ﬁ,m>L =

To confirm that M, ; is self-adjoint, let p, g € R[X]|y_1 and observe
that

qem V.

(MLi(P), @) = (me(Xip), @)L = (Xip, (@) T = (Xip, )L

= L(Xipq) = L(p(X;q)) = (B, X;q) "2 (m1(P), Xiq)1
= (p, 7(Xiq))L = (P, ML,i(9))L




Truncated GNS like construction

Theorem. Let d € N and L € R[X]5, with L(}_R[X]3) C Rso.
Suppose that the truncated GNS multiplication operators of L
commute and set

W = {Z pigi | m € No, pi, qi € R[X]g—1 + UL} 2 R[X]p(g-1)-
i—1

Then L[y, is integration with respect to a finitely supported measure.
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Suppose that the truncated GNS multiplication operators of L
commute. Then L|R[K]2(d—1) is integration with respect to a finitely
supported measure.



Truncated GNS like construction

Theorem. Let d € N and L € R[X]5, with L(}_R[X]3) C Rso.
Suppose that the truncated GNS multiplication operators of L
commute and set

W = {Z pigi | m € No, pi, qi € R[X]g—1 + UL} 2 R[X]a(g-1)-
i—1

Then L[y, is integration with respect to a finitely supported measure.

Corollary. Let d € N and L € R[X]5, with L(>_R[X]?) C Rxo.
Suppose that the truncated GNS multiplication operators of L
commute. Then L|R[K]2(d—1) is integration with respect to a finitely
supported measure.

Corollary. Let d € N and L € R[X];, (one variable) with
L(>-R[X]3) € R>o. Then L|gxy,, . is integration with respect to a
finitely supported measure.

(d-1)



Truncated GNS like construction

Theorem. Let d € N and L € R[X]5, with L(}_R[X]?3) C Rso.
Suppose that the truncated GNS multiplication operators of L
commute and set

m
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i=1

Then Ly, is integration with respect to a finitely supported measure.
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Theorem. Let d € N and L € R[X]5, with L(}_R[X]?3) C Rso.
Suppose that the truncated GNS multiplication operators of L
commute and set

m

Wi = {Z pigi | m € No, pi, qi € R[X]a—1 + UL} 2 R[X]od-1)-
i=1

Then Ly, is integration with respect to a finitely supported measure.

Proof. Choose an orthonormal basis vi, ..., v, of 7, V, consisting of
common eigenvectors for all M, ;.
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My jv; = xjivj for all i,
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Theorem. Let d € N and L € R[X]5, with L(}_R[X]?3) C Rso.
Suppose that the truncated GNS multiplication operators of L
commute and set

Wy = {Z pigi | m € No, pi, qi € R[X]g—1 + UL} 2 R[X]a-1)-
i=1

Then Ly, is integration with respect to a finitely supported measure.
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Theorem. Let d € N and L € R[X]5, with L(}_R[X]?3) C Rso.
Suppose that the truncated GNS multiplication operators of L
commute and set

Wy = {Z pigi | m € No, pi, qi € R[X]g—1 + UL} 2 R[X]a-1)-
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Then Ly, is integration with respect to a finitely supported measure.

Proof. Choose an orthonormal basis vi, ..., v, of 7, V, consisting of
common eigenvectors for all M, ;. Choose xi,...,x, € R” with
MLJVJ' = xjivj forall i,j and a1,...,a, € R such that

l=avi+ - +av. Set \; = ajg for all j. An exercise shows

p(ML1,....M.,)(1) =p forall pe R[X]4—1 + UL.



Truncated GNS like construction

Theorem. Let d € N and L € R[X]5, with L(}_R[X]?3) C Rso.
Suppose that the truncated GNS multiplication operators of L
commute and set

Wy = {Z pigi | m € No, pi, qi € R[X]g—1 + UL} 2 R[X]a-1)-
i=1

Then Ly, is integration with respect to a finitely supported measure.

Proof. Choose an orthonormal basis vi, ..., v, of 7, V, consisting of

common eigenvectors for all M, ;. Choose xi,...,x, € R” with

My jv; = xjivj for all i,j and a1,...,a, € R such that

1=ajvi+ -+ arv. Set \j = af for all j. An exercise shows
p(ML1,....M.,)(1) =p forall pe R[X]4—1 + UL.

Let p, g € R[X]y—1 + U,. Then

L(pg) = (p.G)r = (P(Mr1, .., M n)(1), (ML 1, ..., ML p)(1))1.



Truncated GNS like construction

Theorem. Let d € N and L € R[X]5, with L(}_R[X]?3) C Rso.
Suppose that the truncated GNS multiplication operators of L
commute and set

Wy = {Z pigi | m € No, pi, qi € R[X]g—1 + UL} 2 R[X]a-1)-
i=1

Then Ly, is integration with respect to a finitely supported measure.

Proof. Choose an orthonormal basis vi, ..., v, of 7, V, consisting of

common eigenvectors for all M, ;. Choose xi,...,x, € R” with

My jv; = xjivj for all i,j and a1,...,a, € R such that

1=ajvi+ -+ arv. Set \j = af for all j. An exercise shows
p(ML1,....M.,)(1) =p forall pe R[X]4—1 + UL.

Let p, g € R[X]y—1 + U,. Then

L(pq) = <Z aip(Ma,. .., ML,n)(Vj),Zakq(ML,l, s ML,n)(Vk)> -
=1 .
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Truncated GNS like construction

Theorem. Let d € N and L € R[X]5, with L(}_R[X]?3) C Rso.
Suppose that the truncated GNS multiplication operators of L
commute and set

Wy = {Z pigi | m € No, pi, qi € R[X]g—1 + UL} 2 R[X]a-1)-
i=1

Then Ly, is integration with respect to a finitely supported measure.

Proof. Choose an orthonormal basis vi, ..., v, of 7, V, consisting of

common eigenvectors for all M, ;. Choose xi,...,x, € R” with

My jv; = xjivj for all i,j and a1,...,a, € R such that

1=ajvi+ -+ arv. Set \j = af for all j. An exercise shows
p(ML1,....M.,)(1) =p forall pe R[X]4—1 + UL.

Let p,g € R[X]g—1 + Ur. Then

r r
L(pq) = <Z ajp(le, e ,Xj,,)vj, Z akq(le, e ,xj-n)vk> .
Jj=1 L

k=1



Truncated GNS like construction

Theorem. Let d € N and L € R[X]5, with L(}_R[X]?3) C Rso.
Suppose that the truncated GNS multiplication operators of L
commute and set

Wy = {Z pigi | m € No, pi, qi € R[X]g—1 + UL} 2 R[X]ad-1)-
i=1

Then Ly, is integration with respect to a finitely supported measure.

Proof. Choose an orthonormal basis vi, ..., v, of 7, V, consisting of

common eigenvectors for all M, ;. Choose xi,...,x, € R” with

My jv; = xjivj for all i,j and a1,...,a, € R such that

1=ajvi+ -+ arv. Set \j = af for all j. An exercise shows
p(ML1,....M.,)(1) =p forall pe R[X]4—1 + UL.

Let p,g € R[X]g—1 + Ur. Then

L(pq) = > > ajap(x)a(x) (v, vie), -

j=1 k=1



Truncated GNS like construction

Theorem. Let d € N and L € R[X]5, with L(}_R[X]?3) C Rso.
Suppose that the truncated GNS multiplication operators of L
commute and set

Wy = {Z pigi | m € No, pi, qi € R[X]g—1 + UL} 2 R[X]a-1)-
i=1

Then Ly, is integration with respect to a finitely supported measure.

Proof. Choose an orthonormal basis vi, ..., v, of 7, V, consisting of
common eigenvectors for all M, ;. Choose xi,...,x, € R” with
MLJVJ' = xjivj forall i,j and a1,...,a, € R such that

l=avi+ - +av. Set \; = ajg for all j. An exercise shows

p(ML1,....M.,)(1) =p forall pe R[X]4—1 + UL.
Let p, g € R[X]y—1 + U,. Then



Truncated GNS like construction

Theorem. Let d € N and L € R[X]5, with L(}_R[X]?3) C Rso.
Suppose that the truncated GNS multiplication operators of L
commute and set

Wy = {Z pigi | m € No, pi, qi € R[X]g—1 + UL} 2 R[X]ad-1)-
i=1

Then Ly, is integration with respect to a finitely supported measure.

Proof. Choose an orthonormal basis vi, ..., v, of 7, V, consisting of
common eigenvectors for all M, ;. Choose xi,...,x, € R” with
My jv; = xjivj for all i,j and a1,...,a, € R such that

1=ajvi+ -+ arv. Set \j = ajg for all j. An exercise shows
p(ML1,....M.,)(1) =p forall pe R[X]4—1 + UL.
Let p,g € R[X]g—1 + Ur. Then

r

L(pq) =Y _ Ai(pa)(%)-

Jj=1
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Let d € Nand L € R[X]5,, L(O_R[X]3) € Rsg and L' := LIR(X]pq_1)-
Then the following are equivalent:

(a) R[X]g—1+ UL = R[X]q



Flatness condition

Let d € Nand L € R[X]3,, LOOR[X]Z) € Roo and L' = Llgx,, -
Then the following are equivalent:

(a) R[X]g-1+ UL =R[X]q

(b) m VL=V,



Flatness condition

Let d € Nand L € R[X]3,, LOOR[X]Z) € Roo and L' = Llgx,, -
Then the following are equivalent:

(a) R[X]g—1+ U =R[X]q

(b) L VL = VL

() VaeNJ: (la|=d = FpeR[X]yg_1: X*—pe U)



Flatness condition

Let d € Nand L € R[X]5,, L(O_R[X]3) € Rsg and L' := L|rix1,q
Then the following are equivalent:

(a) R[XJg—1+ UL =R[X]q

(b) m VL =

(c) Ya e Nj - (|a| =d = FpeRX]g_1: X¥—pe )

(d) In the diagram

Vir = R[X]g-1/Up « R[X]g—1/(U.MR[X]¢-1) = R[X]a/UL = V|

both maps are isomorphisms.
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Flatness condition

Let d € Nand L € R[X]5,, L(O_R[X]3) € Rsg and L' := LIR(X]pq_1,
Then the following are equivalent:

(a) R[X]g—1+ UL = R[X]q

(b) m VL =

(c) Ya e Nj - (|a| =d = FpeRX]g_1: X¥—pe )
(d)

In the diagram

Vir = R[X]g-1/Up « R[X]g—1/(U.MR[X]¢-1) = R[X]a/UL = V|
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Flatness condition

Let d € Nand L € R[X]5,, L(O_R[X]3) € Rsg and L' := LIR(X]pq_1,
Then the following are equivalent:

(a) R[X]g—1+ UL =R[X]q4

(b) m VL=V,

() VaeNJ: (la|=d = FpeR[X]yg_1: X*—pe U)

(d)

d) In the diagram

Vir = R[X]g-1/Up « R[X]g—1/(UNR[X]g-1) = R[X]q/UL = Vi
both maps are isomorphisms.
(e) dim Vpy =dimV,

(f) ( (Xa+’8))|a‘ |8|<d—1 and ( (Xa+’8))‘a| 18]<d have the same rank.
If (one of) these conditions is satisfied, then we call L flat.



Flatness condition

Let d € Nand L € R[X]3,, LOOR[X]Z) € Roo and L' = Llgx,, -
Then the following are equivalent:

(a) R[X]g—1+ UL =R[X]q4

(b) m VL=V,

() VaeNJ: (la|=d = FpeR[X]yg_1: X*—pe U)

(d)

d) In the diagram

Vir = R[X]g-1/Up «= R[X]g—1/(U.NR[X]g-1) — R[X]a/UL = V.

both maps are isomorphisms.
(e) dim V;, = dim VL
(f) (L(Ka+’8))|a‘7|m§d_1 and (L(Ka+ﬁ))‘a|7‘ﬁ|§d have the same rank.

If (one of) these conditions is satisfied, then we call L flat. One can
show that in this case, the truncated GNS multiplication operators of L
commute.



Flatness condition

Let d € Nand L € R[X]3,, LOOR[X]Z) € Roo and L' = Llgx,, -
Then the following are equivalent:

(a) R[X]g—1+ UL =R[X]q4

(b) 7TLVL = VL

() VaeNJ: (la|=d = FpeR[X]yg_1: X*—pe U)

(d)

d) In the diagram

Vir = R[X]g-1/Up «= R[X]g—1/(U.NR[X]g-1) — R[X]a/UL = V.

both maps are isomorphisms.
(e) dim Vpy =dimV,
(f) (L(g(“*ﬁ))|a‘7|m§d_1 and (L(g(a+5))‘a|7‘5|§d have the same rank.
If (one of) these conditions is satisfied, then we call L flat. One can
show that in this case, the truncated GNS multiplication operators of L

commute. So the following theorem of Curto and Fialkow (1996) is a
corollary: If L is flat, then L comes from a finitely supported measure.
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The Gram matrix method
Let m € Ny, p1,...,pm € R[X] and k € Ny. Remember that the

k-truncated quadratic module associated to p1,...,pm is
(RIXTND RIXP)+HRIXTNY  RXPp1)+ - +(RIX]NY  RIXT*pm).
We learned how to express the condition L( Tx(p1,...,pm)) € R>q for

L € R[X]}; as a linear matrix inequality.

Can we also express Tx(pi,-..,pm) itself by a linear matrix inequality?
Yes, after introducing additional variables!

Let k € No, p € R[X]c \ {0}, d := {%W)J

uy
U, ..., us linear generators of R[X]|y and v := ( : ) Then

Us

RIX]«NY RIX]Pp = {Z h?p | hi € R[X]d} = {u"Gup | G € R}

i=1
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The dual of the moment relaxation
Let a POP

(P) minimize f(x) over x € R" subject to p1(x) > 0,...,pm(x) >0
be given (m,n € Ny, f,p1,..., pm € R[X]).
Let k € Ng be the relaxation degree such that f, p1,..., pm € R[X]x.

The degree kK moment relaxation (or Lasserre relaxation) of (P) is the
SDP given by

(Px) minimize L(f) over L e R[X];
subject to  L(T(p1,...,pm)) € R>p and
[(1)=1

One can show that the dual SDP can be written as

(Dx) maximize a over a€R
subject to f—ae€ Ti(p1,...,Pm)
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Nontrivial properties of the moment relaxation

Let m, n, k € Ng such that f,p1,..., pm € R[X]x.

S = {x €R" | pi(x) > 0,.... pm(x) > 0}

Want to solve the POP: (P) minimize f(x) over x € S

T = {X0 22 h5pi | hyj € RIX], deg(hzp;) < kY, T := Upen Tk
(Px) minimize L(f) over L € R[X]; s.t. L(Tx) CR>p and L(1) =1
(Dx) maximize a over a € R subject to f —a € Ty

Remark (relaxation hierarchy). (D} )« and (P}) are increasing sequences
not exceeding P*.

Remark (weak duality). P; > D;
Lemma. If S has non-empty interior in R", then Ty is closed in R[X].

Proposition (strong duality). If S has non-empty interior in R”, then
P; = D; and, unless P; = D} = —oo, (D) has an optimal solution.



Nontrivial properties of the moment relaxation

Let m, n, k € Ng such that f,p1,..., pm € R[X]x.

S = {x €R" | pi(x) > 0,.... pm(x) > 0}

Want to solve the POP: (P) minimize f(x) over x € S

T = {X0 22 h5pi | hyj € RIX], deg(hzp;) < kY, T := Upen Tk
(Px) minimize L(f) over L € R[X]; s.t. L(Tx) CR>pand L(1) =1
(Dx) maximize a over a € R subject to f —a € Ty

Theorem (Krivine 1964, Schmiidgen 1991, Putinar 1993). Equivalent:

(a) 3teNg:dq1,...,q: eRX]: (VI C{1,...,t}: [[ic;qi €T &
{x €R"| q1(x) >0,...,q:(x) > 0} compact)
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(c) INEN:N-YT X?€eT
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(e) S compact & VpeR[X]:(p>0onS = peT)

Proof. () = (d) = (¢) = (b) = (a) are trivial.
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(e) S compact & VpeR[X]:(p>0onS = peT)

Proof. (a) = (c) very hard (proved by Schmiidgen 1991, simplified
by Wérmann 1998, all proofs use Krivine's 1964 Positivstellensatz)
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Want to solve the POP: (P) minimize f(x) over x € S

T = {X0 22 h5pi | hyj € RIX], deg(hzp;) < kY, T := Upen Tk
(Px) minimize L(f) over L € R[X]; s.t. L(Tx) CR>p and L(1) =1
(Dx) maximize a over a € R subject to f —a € Ty

Theorem (Krivine 1964, Schmiidgen 1991, Putinar 1993). Equivalent:

(a) 3teNg:dq1,...,q: eRX]: (VI C{1,...,t}: [[ic;qi €T &
{x € R" | q1(x) > 0,...,q¢(x) > 0} compact)

(b) 3g€ T : {x € R" | g(x) > 0} compact
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(e) S compact & VpeR[X]:(p>0onS = peT)

Proof. (d) = (e) Putinar 1993 (via duality and functional analysis),
Jacobi 2001 (algebraic, tricky, several pages), Marshall 2008 (three lines)
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t

If these equivalent conditions are satisfied, we call T archimedean.
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If S is compact, you can establish (a) by augmenting the p; by their
products (too expensive when m is large!).
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If S is compact and you know a ball around 0 containing S, you can
establish (c) easily by adding a redundant p;.
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Corollary. If T is archimedean, then (D}), and (P})x converge to P*.
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[ (o)
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Here ||p|| := max{|a.||a € Ng} for p = ZaeNg aa( Jed )X* aq € R.

ai...an/ =
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C

C

for all large k.

0<P*— P, <P —Dj <

N
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<
7k

The dependance on f can be made explicit.
The proof hints to make dependance on the g; explicit for concrete g;.
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C
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0< P —Pf<P*—D} <

for all large k.
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(a) LeRX]*, L(T) C Rsp and L(1) = 1.

(b) L is integration with respect to a probability measure on S.
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Let m, n, k € Ng such that f,p1,..., pm € R[X]x.

S = {x €R" | pi(x) > 0,.... pm(x) > 0}

Want to solve the POP: (P) minimize f(x) over x € S
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Theorem (Krivine 1964, Schmiidgen 1991, Putinar 1993).
The following are equivalent:

(a) LeRX]*, L(T) C Rsp and L(1) = 1.

(b) L is integration with respect to a probability measure on S.

This is dual to the previous result of Schmiidgen and Putinar.



Nontrivial properties of the moment relaxation

Let m, n, k € Ng such that f,p1,..., pm € R[X]x.

S = {x €R" | pi(x) > 0,.... pm(x) > 0}

Want to solve the POP: (P) minimize f(x) over x € S

T = {X0 22 h5pi | hyj € RIX], deg(hzp;) < kY, T := Upen Tk
(Px) minimize L(f) over L € R[X]; s.t. L(Tx) CR>p and L(1) =1
(Dx) maximize a over a € R subject to f —a € Ty

Theorem (S. 2005). Suppose that L, solves (Py) “nearly to optimality”
for all k. Fix d and a norm on R[X]’. Denote by S* the set of optimal
solutions to (P). Then for each £ > 0, there is k such that for all ¢ > k,
there exists a probability measure 1 on S* with

| Lelrpx), — Lull <e.



Nontrivial properties of the moment relaxation

Let m, n, k € Ng such that f,p1,..., pm € R[X]x.

S = {x €R" | pi(x) > 0,.... pm(x) > 0}

Want to solve the POP: (P) minimize f(x) over x € S

T = {X0 22 h5pi | hyj € RIX], deg(hzp;) < kY, T := Upen Tk
(Px) minimize L(f) over L € R[X]; s.t. L(Tx) CR>p and L(1) =1
(Dx) maximize a over a € R subject to f —a € Ty

Theorem (S. 2005). Suppose that L, solves (Py) “nearly to optimality”
for all k. Fix d and a norm on R[X]’. Denote by S* the set of optimal
solutions to (P). Then for each £ > 0, there is k such that for all ¢ > k,
there exists a probability measure 1 on S* with

| Lelrpx), — Lull <e.

Here L,: R[X]g = R, p— [ p(x)dpu(x).



Nontrivial properties of the moment relaxation

Let m, n, k € Ng such that f,p1,..., pm € R[X]x.

S = {x €R" | pi(x) > 0,.... pm(x) > 0}

Want to solve the POP: (P) minimize f(x) over x € S

T = {X0 22 h5pi | hyj € RIX], deg(hzp;) < kY, T := Upen Tk
(Px) minimize L(f) over L € R[X]; s.t. L(Tx) CR>p and L(1) =1
(Dx) maximize a over a € R subject to f —a € Ty

Theorem (S. 2005). Suppose that L, solves (Py) “nearly to optimality”
for all k. Fix d and a norm on R[X]’. Denote by S* the set of optimal
solutions to (P). Then for each £ > 0, there is k such that for all ¢ > k,
there exists a probability measure ;1 on S* with

[Lelrix), — Lull <e.

Corollary. If (P) has exactly one optimal solution x*, then
“mk%oo(l-k(xl), ey Lk(Xn)) = x*.



Implementation

» YALMIP, Linkdping
Lofberg
http://users.isy.liu.se/johanl/yalmip/


http://users.isy.liu.se/johanl/yalmip/
http://www.laas.fr/~henrion/software/gloptipoly3/
http://www.is.titech.ac.jp/~kojima/SparsePOP/
http://www.cds.caltech.edu/sostools/
http://www.rwth-aachen.de/~you/

Implementation

» GloptiPoly, LAAS Toulouse
Henrion, Lasserre, Lofberg
http://www.laas.fr/ henrion/software/gloptipoly3/


http://users.isy.liu.se/johanl/yalmip/
http://www.laas.fr/~henrion/software/gloptipoly3/
http://www.is.titech.ac.jp/~kojima/SparsePOP/
http://www.cds.caltech.edu/sostools/
http://www.rwth-aachen.de/~you/

Implementation

» SparsePOP, Tokyo Institut of Technology
Waki, Kim, Kojima, Muramatsu, Sugimoto, Yamashita
http://www.is.titech.ac.jp/ kojima/SparseP0P/


http://users.isy.liu.se/johanl/yalmip/
http://www.laas.fr/~henrion/software/gloptipoly3/
http://www.is.titech.ac.jp/~kojima/SparsePOP/
http://www.cds.caltech.edu/sostools/
http://www.rwth-aachen.de/~you/

Implementation

» SOSTOOLS, Caltech
Prajna, Papachristodoulou, Seiler, Parrilo
http://www.cds.caltech.edu/sostools/


http://users.isy.liu.se/johanl/yalmip/
http://www.laas.fr/~henrion/software/gloptipoly3/
http://www.is.titech.ac.jp/~kojima/SparsePOP/
http://www.cds.caltech.edu/sostools/
http://www.rwth-aachen.de/~you/

Implementation

» YouPOP, Your Institute
You and your colleagues
http://www.rwth-aachen.de/ you/


http://users.isy.liu.se/johanl/yalmip/
http://www.laas.fr/~henrion/software/gloptipoly3/
http://www.is.titech.ac.jp/~kojima/SparsePOP/
http://www.cds.caltech.edu/sostools/
http://www.rwth-aachen.de/~you/

