
Meeting on Real Algebraic Geometry With A View Toward
Systems Control and Free Positivity

Mathematisches Forschungsinstitut Oberwolfach

April 7–11, 2014

Markus Schweighofer (Universität Konstanz)

Positive polynomials, sums of squares, degree bounds and semidefinite
representations

All students of mathematics should know that every polynomial in one variable
nonnegative on the real line is a sum of two squares of polynomials:

Theorem 1. Suppose f ∈ R[X] and f ≥ 0 on R. Then there exist p, q ∈ R[X]
such that f = p2 + q2.

Proof. By the fundamental theorem of algebra, f is a product of linear polynomials
in C[X] corresponding to the multiset of complex roots of f (i.e., the roots counted
with multiplicity). Since f is nonnegative, the real factors appear with an even
multiplicity. Since f is real, the non-real factors appear in complex-conjugated
pairs. Any division of the multiset into two complex-conjugated parts, now leads

to a complex polynomial p+
◦
ıq (p, q ∈ R[X]) such that

f = (p− ◦ıq)(p+
◦
ıq) = p2 + q2

where
◦
ı ∈ C denotes the imaginary unit. �

Note that this theorem can be reformulated in the following more systematic style
(since a complex polynomial taking real values on the line is automatically real):

For all f ∈ C[X] with f ≥ 0 on R, there exists p ∈ C[X] such that f = p∗p.

Here
◦
ı
∗

= −◦ı and X∗ = X: We denote by ∗ the complex conjugation and extend
it on an involution on polynomial rings by considering the variables to be formally
self-adjoint. We also have obvious degree bounds in the above: If d ∈ N such that
deg f ≤ 2d, then deg p ≤ d follows immediately.

The following non-trivial generalization of Theorem 1 to matrix polynomials positive
semidefinite on the real line was folklore at least since the 1960s (see for example
[1]). Here ∗ acts as before but in addition transposes the matrices.

Theorem 2. Suppose F ∈ C[X]s×s and F � 0 on R. Then there exists P ∈ C[X]
such that F = P ∗P .

Taking the trace on both sides of the equation F = P ∗P yields
∑s

i=1 Fii =∑s
i,j=1 P

∗
ijPij . Using this, it is easy exercise to show that we get the same kind

of automatic degree bounds as before. The most elementary proof of Theorem 1
has been given (for the case F ∈ R[X]s×s) by Choi, Lam and Reznick [2, Section
7]. The rough idea of their proof is by completing the square successively with
respect to the different variables one by each. To compensate for the impossibility
of division in the polynomial ring, during this process multipliers have to be intro-
duced which can be neutralized using the fundamental theorem of algebra. In [2],
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this neutralization involves very tricky computations. In the first part of the talk,
we present a new and very “clean” way to do this neutralization using basic linear
algebra instead of computations. This yields arguably the easiest known proof of
Theorem 2.

With a little more work, this new argument also allows to show that the determi-
nant of the factors in the factorization can be described with the maximal possible
freedom (compare to the proof of Theorem 1):

Theorem 3 (Hanselka & S., Ball & Rodman). Suppose F ∈ C[X]s×s and g ∈ C[X]
such that F � 0 on R and detF = g∗g. Then there exists P ∈ Cs×s such that
F = P ∗P and detP = g.

Theorem 3 was already known in the case where g and g∗ have no common zero [1,
Theorem 3]. Our question whether it is already known in the above stated general
form, reached Joe Ball and Leiba Rodman who negated it and at the same gave an
alternative unpublished proof which is however based on a considerable amount of
the theory of matrix polynomials [3]. Our investigations were initially motivated
by the fact that the algorithm described in [4] to compute the decomposition in
Theorem 2 seems to use (at least weaker versions of) Theorem 3 [5] even though no
version of this theorem is stated let alone proved in [4] (note also that the authors of
[4] claim to give a system-theoretic proof of Theorem 2 [4, page 5660, last paragraph]
which does not seem to be the case since they use the equation Q∗(λ∗i )vi = 0 in [4,
page 5665] without any proof but this equation is almost equivalent to the existence
of the decomposition).

The second part of the talk was a survey on modern versions of Theorems 1 and 2
which we state in the following synthesized way:

Theorem 4 (Schmüdgen 1991, Putinar 1993, Hol & Scherer 2005). Let m,n ∈ N,
g1, . . . , gm ∈ A := R[X1, . . . , Xn] and set g0 := 1 ∈ A. Consider the basic closed
semialgebraic set

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0},

and the matricial quadratic modules

T (s) :=


m∑
i=0

gi
∑
j

P ∗ijPij | Pij ∈ As×s

 (s ∈ N),

and the ordinary quadratic module T := T (1). The following are equivalent:

(a) There exist t ∈ N and h1, . . . , ht ∈ A such that
∏

i∈I hi ∈ T for all I ⊆ {1, . . . , t}
and {x ∈ Rn | h1(x) ≥ 0, . . . , ht(x) ≥ 0} (and therefore also its subset S) is
compact.

(b) There exists h ∈ T such that {x ∈ Rn | h(x) ≥ 0} is compact.
(c) There exists N ∈ N such that N −

∑n
i=1X

2
i ∈ T .

(d) For all p ∈ A there is an N ∈ N such that N + p ∈ T .
(e) S is compact and for every f ∈ A with f > 0 on S, we have f ∈ T .
(f) S is compact and for all s ∈ N and all F ∈ R[X]s× with F � 0 on S, we have

f ∈ T (s).
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The backward implications are obvious whereas the forward implications are not:
We don’t know if there is an easy direct proof of (a)⇒(b). The hardest implications
are (a)⇒(c) (or even (b)⇒(c)): This is the essence of Schmüdgen’s celebrated 1991
theorem [6] whose first algebraic proof was found by Wörmann [7]. All proofs of
Schmüdgen’s Theorem use Krivine’s (classical) Positivstellensatz from real algebraic
geometry [8] (reproved by Stengle [9] and Prestel [10]). The implication (c)⇒(d) is
just a few lines of tricky identities. Implication (d)⇒(e) was just a by-product in
the article [11] by Putinar but got famous due to its numerous applications. The
easiest known proof today stems from Marshall [14]. Finally, (d)⇒(f) is a theorem
due to Hol & Scherer [12]. See [16, 14, 15].

The advantage of modern versions of Theorems 1 and 2 such as Theorem 4 is that
they work in severable variables instead of only one and that they allow to consider
positivity on arbitrary basic closed semialgebraic sets.

The big drawback of the modern versions is that there no obvious or “clean” degree
bounds. The degree bounds instead depend on the geometry [16, 17, 18, 19, 20].
Indeed, the validity of these theorems even strongly relies on the possibility of huge
degree cancellations. Related to this, strict positivity is in general needed although
the certificate is only for nonnegativity.

An ingenious idea of Helton and Nie however surmounts partially these difficulties
in cases where S is stricly convex and the polynomial to represent is of degree one
[20, 21, 22, 23]. In Theorem 4, instead of applying (e) to the degree one polynomial,
they apply (f) to the Hessians of certain polynomials defining the set S locally and
write the degree one polynomial as a double integral over an expression involving
this Hessian. This leads to strong theorems about semidefinite representability
of large classes of convex semialgebraic sets. Indeed, it is an open question if all
convex semialgebraic sets are projections of spectrahedra (i.e., solution sets of linear
matrix inequalities). Even if one is interested in sums of squares representations of
polynomials rather than matrix polynomials, it can be of great help to study the
case of matrix polynomials.
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